

Développement et application d'une méthodologie d'évaluation globale de la qualité hydromorphologique des masses d'eau de surface définies en Région wallonne

Rapport final

Mars 2006

F. GUYON, X. COGELS, P. VANDER BORGHT

Contributions: A. HULPIAU, C. JOLY, N. NEDERLANDT

Département en Sciences et Gestion de l'Environnement

Sommaire

Sommaire	2
Resume	4
INTRODUCTION: RAPPEL DES OBJECTIFS DE LA PRECEDENTE CONVENTION ET PRESENTATION D NOUVELLE MISSION	
CHAPITRE I :PRESENTATION DE LA METHODOLOGIE D'EVALUATION DE LA QUALITE HYDROMORPHOLOGIQUE DES MASSES D'EAU I DEFINIES EN REGION WALLONNE	DE SURFACE
1. LES CONCEPTS MÉTHODOLOGIQUES DE BASE	
1.1. Les exigences fixées par la DCE	
1.2. Définition d'un état de référence hydromorphologique	
1.3. Sectorisation des masses d'eau et échelles de travail	
1.4. Concepts de « critères d'altération » et d'états du critère	
1.5. Principe d'évaluation	8
2. SECTORISATION ET TYPOLOGIE PHYSIQUE DE RÉFÉRENCE DES COURS D'EAU WALLONS	0
2.1. Différents objectifs et échelles d'analyse	9
2.1. Différents objectus et échenes d'analyse	
2.3. Caractérisation de typologic fonctionnelle des tronçons de vance	
3. DÉFINITION ET MODALITÉS D'ESTIMATION DES CRITÈRES D'ALTÉRATION DU PROTOCOLE	
3.1. Choix des critères d'altération	
3.2. Définition des critères d'altération	
3.3. Modalités d'estimation des critères d'altération	19
4. MODALITÉS D'ÉVALUATION DE LA QUALITÉ HYDROMORPHOLOGIQUE DES MASSES D'EAU	2.7
4.1. Principes de construction des indices de qualité et d'évaluation globale	
4.2. Influence des pondérations sur le calcul des indices	
4.3. Cas particulier de l'évaluation de l'élément « Continuité »	
4.4. La structuration des données sous SIG	
CHAPITRE II :APPLICATION DE LA MÉTHODOLOGIE À LA TOMASSES D'EAU DE SURFACE WALLONNES	
ANALYSE DES RESULTATS OBTENUS	35
1. Estimation des critères d'altération	35
1.1. Critères de l'élément « Hydrologie »	
1.2. Elément « Morphologie du lit mineur et des berges »	
1.3. Elément « Continuité »	
2. Analyse des résultats d'indice à l'échelle des tronçons de vallée	41
3. Analyse des résultats d'indice à l'échelle des masses d'eau de surface	42
4. COMPARAISON DES RÉSULTATS OBTENUS AVEC LA DÉSIGNATION PROVISOIRE DES MASSES D'MODIFIÉS RÉALISÉE EN RÉGION WALLONNE	
5. COMPARAISON DES RÉSULTATS OBTENUS AVEC LA DÉSIGNATION DU RNABE	47
	• • • • • • • • • • • • • • • • • • • •

CHAPITRE III :VALIDATION DE CERTAINES DESIGNATIONS PROVISOIRES MASSES D'EAU COMME FORTEMENT MODIFIÉES (ÉTUDE 2004)	
1. Objectifs de cette validation	51
2. RÉSULTATS OBTENUS PAR L'OUTIL QUALPHY	53
CHAPITRE IV :SYNTHÈSE, CRITIQUES ET PERSPECTIVES D'AMÉLIORATION LA MÉTHODOLOGIE D'EVALUATION GLOBALE DE LA QUAI HYDROMORPHOLOGIQUE DES MASSES D'EAU WALLONNES DE SURFACE	LITÉ
1. Synthèse	54
CRITIQUES ET PERSPECTIVES D'AMÉLIORATION DE LA MÉTHODOLOGIE 2.1. Vers une méthodologie hiérarchique et multiscalaire 2.2. Valoriser les données collectées et les résultats obtenus dans la phase d'établissement des plans de	54
gestion par sous bassins	55 55 56
2.6. Intégrer d'autres éléments de l'écosystème aquatique	57
CHAPITRE V :AUTRES CONTRIBUTIONS DE CETTE ETUDE	59
1. Participation à des séminaires	59
2. Participation au groupe de travail « Désignation définitive des masses d'eau wallonnes fortement modifiées »	59
Bibliographie	61
Annexe 1 : Caractéristiques des types physiques wallons	62
ANNEXE 2 : PONDÉRATIONS DU SEQ PHYSIQUE V0' (COMPARTIMENTS LIT MINEUR ET BERGES)	64
Annexe 3 :Resultats de l'ensemble des indices calcules pour les 319 masses d'eau de surface type « riviere » definies en Region Wallonne	
ANNEXE 4 :RESULTATS DES INDICES DE QUALITE PHYSIQUE OBTENUS PAR L'OUTIL QUALPHY POUR LES 6 MASSES D'EAU QUI ONT FAIT L'OBJET D'UNE VALIDATION DE TERRAIN	
ANNEXE 5 :CONTRIBUTIONS A LA DESIGNATION DEFINITIVE DES MEFM	74

Ce rapport est accompagné d'une annexe cartographique

RESUME

La précédente convention avait établi les bases d'une méthodologie d'évaluation globale de la qualité hydromorphologique des masses d'eau de surface définies en Région wallonne. La présente étude a affiné cette méthodologie et l'a appliqué à l'ensemble des masses d'eau wallonnes.

Six critères d'altération ont été retenus dans cette méthodologie afin de caractériser les trois éléments de la qualité hydromorphologique fixés dans la DCE. Chaque critère est décrit par une série d'états : un état de référence et plusieurs états d'altération. Le système de calcul d'indices implique les linéaires concernés pour chaque état des critères et deux systèmes de pondérations traduisant l'importance des altérations et les caractéristiques spécifiques des types de cours d'eau. Des indices ont ainsi été calculés pour chaque critère et pour chaque élément, à deux échelles d'analyse : celle du tronçon de vallée et celle de la masse d'eau. L'indice global de la masse d'eau correspond à l'indice de l'élément le plus pénalisant.

Sur base du seuil de 40% de la valeur de l'indice global, 78 masses d'eau de surface sur les 319 étudiées, pourraient être provisoirement désignées comme fortement modifiées. Une confrontation de cette désignation avec celle réalisée antérieurement par l'Administration des Eaux de Surface de la DGRNE a mis en évidence un taux de concordance de 80%.

Une confrontation des indices calculés avec la désignation du Risque de Non Atteinte du Bon Etat (RNABE) a également été réalisée. Cette analyse a notamment mis en évidence l'importance des pressions hydromorphologiques pour les masses d'eau déclarées « à risque » de ne pas atteindre ce bon état.

Mots clés: hydromorphologie, DCE, indices, masses d'eau, critères d'altération, RNABE.

Abstract:

Preceding study had established the bases of a global evaluation methodology of the hydromorphologic quality of the water bodies defined in Walloon region. The present study refined this methodology and applied to the whole of the Walloon water bodies.

Six criteria of deterioration were retained in this methodology in order to characterize the three elements of hydromorphologic quality fixed in the WFD. Each criterion is described by a series of states: a state of reference and several states of deterioration. The system of calculation of indices implies the linear concerned ones for each state of the criteria and two systems of weightings translating the importance of deteriorations and the specific characteristics of the types of river. Indices were thus calculated for each criterion and each element, on two scales of analysis: that of the valley reach and that of the water body. The total index of the water body corresponds to the index of the element more penalizing.

On the basis of threshold of 40% of the value of the total index, 78 water bodies on the 319 studied, could be provisionally designated like heavily modified. A confrontation of this designation with that carried out before by the "Administration des Eaux de Surface de la DGRNE" highlighted a rate of agreement of 80%.

A confrontation of the indices calculated with the designation of the risk of failing Good State was also carried out. This analysis in particular highlighted the importance of the hydromorphologic pressures for the water bodies stated "at the risk" not to reach this good state.

<u>Keywords</u>: Hydromorphology, WFD, scores, water body, criteria of deterioration.

Introduction: Rappel des objectifs de la precedente convention et presentation de cette nouvelle mission

En 2004, la Direction des Eaux de Surface de la DGRNE a confiée à l'Aquapole une mission ayant pour but d'élaborer un outil permettant l'évaluation globale de la qualité hydromorphologique de l'ensemble des masses d'eau de surface définies en Région Wallonne. Cet outil devait être utilisable par la DGRNE afin qu'elle puisse répondre aux impératifs de la Directive 2000/60/CE dans les délais impartis. Ce système devait être pratique, financièrement réalisable et techniquement possible.

Cette évaluation globale a été établie sur base de la méthodologie de l'outil QUALPHY, qui a été simplifiée et adaptée à l'échelle d'analyse des masses d'eau et sur les données existantes (couches SIG, PPNC,). L'objectif premier de ces adaptations méthodologiques était de rencontrer les exigences de l'application de la DCE en Région Wallonne, impliquant :

- de valider la désignation provisoire des Masses d'eau fortement modifiées (MEFM) réalisée par l'Administration des Eaux de Surface, en charge de l'application de cette directive ;
- d'évaluer le risque de non atteinte du très bon état écologique pour les masses d'eau naturelles présentant un très bon état biologique et physico-chimique;

La caractérisation des MEFM avait incité l'Administration des Eaux de Surface à définir des critères objectifs d'ordre hydromorphologique, en accord avec les documents guides des groupes de travail européens. Trois critères avaient été retenus en Région wallonne :

- le % de berges artificialisées,
- le % de masse d'eau en zone urbanisée,
- le nombre d'obstacles infranchissables ou majeurs par kilomètre de cours d'eau.

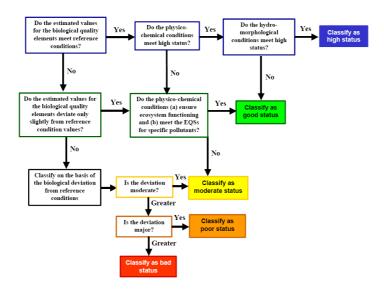
La prise en compte de ces trois critères avait permis de désigner de manière provisoire 75 MEFM parmi les 351 masses d'eau de surface définies en Région Wallonne. La mission confiée à l'Aquapôle en 2004, et qui se prolonge dans cette nouvelle mission, a donc pour objectif prioritaire de valider cette désignation provisoire.

La précédente convention a développé une méthodologie reposant sur sept critères d'altération, en se basant sur une analyse critique de l'outil QUALPHY (paramètres les plus discriminants, prise en compte des critiques formulées suite aux études de validation, ...) caractérisant le mieux les 3 éléments fixés dans la DCE. Cette méthodologie d'évaluation globale de la qualité hydromorphologique a été appliquée à 102 masses d'eau de surface échantillonnées en Région wallonne afin de tester la méthode. Un indice global de qualité ainsi que des indices partiels par élément et par critère ont été calculés pour les masses d'eau à l'étude. Sur base d'un seuil de résultats de l'indice global de 40%, 33 masses d'eau sur les 102 à l'étude ont été désignées comme MEFM.

La présente étude a pour objectif d'appliquer cette méthodologie à l'ensemble des masses d'eau définies en Région wallonne. Certains ajustements de la méthodologie développée dans la précédente étude ont également été entrepris afin de rencontrer certaines suggestions formulées par le comité d'accompagnement. De plus, les résultats obtenus pour certaines masses d'eau étudiées en 2004 ont montré des discordances de désignation provisoire en tant que MEFM par rapport à la désignation réalisée préalablement par l'Administration, et des vérifications de terrain ont été menées dans la présente étude afin de valider ces désignations provisoires.

CHAPITRE I:

PRESENTATION DE LA METHODOLOGIE D'EVALUATION GLOBALE DE LA QUALITE HYDROMORPHOLOGIQUE DES MASSES D'EAU DE SURFACE DEFINIES EN REGION WALLONNE


1. LES CONCEPTS MÉTHODOLOGIQUES DE BASE

1.1. Les exigences fixées par la DCE

Le développement d'un outil d'évaluation de la qualité hydromorphologique des masses d'eau wallonne de surface s'inscrit directement dans l'application de la DCE en Région wallonne. Cette Directive européenne impose que chaque masse d'eau de surface fasse l'objet d'une évaluation de la qualité hydromorphologique selon 3 éléments : l'hydrologie, la morphologie et la continuité.

Cette évaluation intervient dans deux objectifs de l'état des lieux des masses d'eau :

- Le premier devant aboutir à une désignation provisoire des MEFM,
- Le second ayant pour but de confirmer ou d'infirmer le statut de très bon état écologique des masses d'eau présentant un très bon état biologique et physico-chimique (voir schéma cidessous).

La désignation provisoire des MEFM constitue un objectif majeur de cette évaluation de la qualité hydromorphologique. Selon les textes de la DCE, une MEFM provisoirement désignée est une masse d'eau :

- à risque de non atteinte du bon état écologique,
- <u>et</u> où les modifications hydromorphologiques sont **significatives** à l'échelle de la masse d'eau,
- ces modifications significatives sont dues à des **altérations physiques** importantes à l'échelle de la masse d'eau, occasionnées par des activités humaines (**pressions**) impactant les **qualités hydrologiques** <u>et</u> **morphologiques** de ces cours d'eau.

Ce contexte d'évaluation fixé par la DCE nous a donc imposé :

- De structurer la méthodologie d'évaluation selon les 3 éléments définis dans la DCE,
- D'orienter cette évaluation à partir d'une identification et une estimation des altérations (ou incidences anthropogéniques), qui sont comparés à des conditions de référence préalablement définies.

Cette méthodologie d'évaluation est donc fortement orientée sur la mesure des incidences des pressions d'origine anthropique à l'échelle des masses d'eau. En d'autres termes, il s'agit plus ici d'estimer l'ampleur et l'intensité des altérations physiques qui affectent la masse d'eau que de décrire les caractéristiques du fonctionnement naturel de ces écosystèmes aquatiques.

1.2. Définition d'un état de référence hydromorphologique

Le contexte fixé par la DCE et le postulat méthodologique défini précédemment repose sur la prise en compte d'un état (pseudo naturel) de référence des cours d'eau. Celui-ci peut être défini comme « l'état qu'aurait ou que pourrait avoir un cours d'eau si on supprimait tous les aménagements et les ouvrages contraignants et structurants qui le contrôlent, afin de le laisser évoluer naturellement » (MEDD, 2002).

Dans ce cadre conceptuel, l'évaluation de la qualité hydromorphologique s'oriente vers une évaluation de l'état d'anthropisation du cours d'eau, dépendant de la nature, de l'intensité des altérations qui affectent celui-ci et de la sensibilité de ce cours d'eau à ces altérations. Une masse d'eau n'ayant subi que des altérations de faible intensité sur une portion faible de son linéaire total, et facilement réversible, sera donc de bonne qualité.

Cette approche présente l'intérêt de cibler et de quantifier les sources d'altération à l'échelle de la masse d'eau et de préciser leur part respective dans la dégradation des cours d'eau. Elle constitue ainsi « une démarche dynamique qui peut permettre d'évaluer les possibilités de gestion et de restauration des cours d'eau » (MEDD, 2002).

1.3. Sectorisation des masses d'eau et échelles de travail

La méthodologie d'évaluation que nous proposons intègre une sectorisation des cours d'eau définis comme masses d'eau de surface. Cette sectorisation est nécessaire afin de distinguer les types de fonctionnement hydromorphologique existants pour les cours d'eau wallons, ou des objectifs spécifiques comme celui de la « Continuité longitudinale des cours d'eau », selon des échelles d'analyse appropriées.

Les masses d'eau wallonnes de surface ont été définies sur base des recommandations fixées dans la DCE (système B utilisé en Région wallonne). Une typologie de ces masses d'eau a été définie et 25 types différents ont été identifiés. Chaque type de masse d'eau est donc considéré comme homogène par rapport aux critères qui ont été retenus pour cette typologie. Néanmoins, l'approche du fonctionnement hydromorphologique des cours d'eau nous a amené à définir d'autres critères associés à des échelles d'analyse spécifiques, et donc à sectoriser les linéaires de masses d'eau en plusieurs tronçons de vallée ou à regrouper ces linéaires pour rencontrer d'autres objectifs.

Cette sectorisation des masses d'eau a permis d'établir une **typologie fonctionnelle** des cours d'eau, établissant ainsi des conditions de référence du fonctionnement hydromorphologique et/ou écologique de ces cours d'eau. Cette typologie fonctionnelle est utilisée dans le calcul des indices de qualité en pondérant les données collectées afin de tenir compte du fonctionnement spécifique du tronçon étudié et de sa sensibilité aux altérations identifiées et quantifiées.

1.4. Concepts de « critères d'altération » et d'états du critère

Compte tenu des concepts méthodologiques énoncés précédemment, mettant en exergue que la qualité hydromorphologique dépend notamment de la nature et de l'intensité des altérations d'origine anthropique s'exerçant sur les cours d'eau, nous avons défini des « critères d'altération » qui caractérisent les trois éléments fixés par la DCE.

Ces critères synthétiques expriment la nature et l'intensité des impacts générés par des altérations majeures affectant les cours d'eau. Ces critères sont caractérisés par **une série d'états** :

- Un état de référence,
- Un ou plusieurs états d'altération exprimant des degrés d'intensité des impacts concernés par ces critères.

1.5. Principe d'évaluation

Le principe d'évaluation que nous avons développé s'appuie sur les travaux de nombreux auteurs (ANDRIAMAHEFA, 1999; WASSON et *al.*, 1998, ...). Ces travaux français reposent eux-mêmes sur le **modèle PER (Pression – Etat – Réversibilité)** développé au Canada et adopté par d'autres organisations (OCDE, WRI, EPA). Ce modèle PER qui a été modifié pour intégrer la problématique de l'anthropisation des cours d'eau, repose sur la **notion de causalité** (ANDRIAMAHEFA, 1999) : les activités humaines exercent des pressions qui affectent les écosystèmes aquatiques (« état »). Cet écosystème répond à ces changements de manière spécifique selon ses propres caractéristiques fonctionnelles et selon des trajectoires plus ou moins définitives (notions de « Réversibilité » ou de « Sensibilité » des types de cours d'eau).

Ce modèle intègre 2 composantes (ANDRIAMAHEFA, 1999):

- Les indicateurs ou critères (nos critères d'altération) qui sont des paramètres (mesures ou observations) ou leurs expressions statistiques ;
- Les indices qui sont un ensemble de critères agrégés et/ou pondérés, décrivant une situation, l'état d'un phénomène de l'environnement ou d'une zone géographique. Ces indices constituent une aide précieuse pour les gestionnaires des cours d'eau en leur permettant d'apprécier l'état de santé des hydrosystèmes. Ils peuvent également être précieux pour apprécier les résultats réels de politiques de restauration des cours d'eau.

Les indices que nous proposons reposent sur la modalité de calcul suivante :

Indice de qualité = $L \times I \times S$, avec :

- L = Linéaire correspondant aux différents états des critères.
- I = Intensité des altérations (états)
- S = Sensibilité du cours d'eau à ces altération selon son type fonctionnel.

Cette combinaison de paramètres amenant au calcul des indices se justifie par les remarques ou précisions suivantes :

- L'artificialisation des cours d'eau doit être évaluée à une échelle suffisamment globale (celle du tronçon ou de la masse d'eau). Cela implique qu'il faut prendre en considération le cumul des impacts générés par les altérations ;
- L'intensité des altérations (I) cherchera à mettre en évidence les différents niveaux d'altération s'exerçant sur les cours d'eau pour un critère donné, par rapport à un état de référence. Des états de référence et des états d'altération ont été ainsi définis, quantifiés et pondérés pour chaque critère d'altération proposé.

• La sensibilité des cours d'eau (S) s'attache à pondérer le calcul de l'indice afin de tenir compte de la réponse spécifique de certains types de cours d'eau à des altérations. Par exemple, des travaux de rectification du tracé en plan engendreront des impacts négatifs plus importants pour un cours d'eau naturellement sinueux à énergie faible, que pour un cours d'eau à énergie forte et peu sinueux.

Ces calculs d'indices font donc appel à différentes données :

- Des données quantifiées exprimant les linéaires affectés pour chaque état des critères,
- Deux systèmes de pondération de ces données : l'un concernant ces états et l'autre traduisant la sensibilité spécifique des types de cours d'eau à ces altérations.

2. SECTORISATION ET TYPOLOGIE PHYSIQUE DE RÉFÉRENCE DES COURS D'EAU WALLONS

2.1. Différents objectifs et échelles d'analyse

L'évaluation de la qualité hydromorphologique selon le trois éléments fixés par la DCE nous a amené à réfléchir sur les objectifs et les échelles d'analyse pertinents pour aborder chacun de ces éléments. Deux objectifs d'analyse ont ainsi été identifiés :

- 1. L'évaluation des impacts cumulés occasionnés par les altérations d'origine anthropique s'exerçant sur les éléments « Hydrologie » et « Morphologie ». L'échelle du tronçon de vallée a été retenue pour cette évaluation. Ces tronçons de vallée correspondent à des unités homogènes qui sont définies selon COHEN (1998), comme « toute portion de cours d'eau dont les profils en long et en travers sont constants ainsi que son gabarit moyen ». Ils ont été délimités par une sectorisation des linéaires de masses d'eau et caractérisés par un type de fonctionnement spécifique. C'est au sein de ces unités homogènes que sera estimé le cumul des impacts générés par les différentes altérations retenues dans la méthodologie.
- 2. La problématique de la continuité longitudinale des cours d'eau nécessite une approche et une échelle d'analyse différente de celle du tronçon de vallée. Elle s'inscrit dans une réflexion qui vise à favoriser la libre circulation des espèces aquatiques dans le gradient amont/aval. Les poissons ont été retenus comme indicateur pour cette problématique. Cet axe de continuité longitudinale implique de tenir en compte des besoins et des comportements spécifiques de groupes d'espèces représentés par des espèces indicatrices de référence (ces besoins et comportements impliquant une dimension spatiale, ils sont différents pour des grands migrateurs, comme le Saumon atlantique, par rapport à ceux nécessaires pour les cyprins d'eaux calmes). L'échelle de la masse d'eau ou du groupe de masses d'eau contiguës a été retenue pour aborder cette problématique de la continuité longitudinale des cours d'eau.

2.2. Caractérisation et typologie fonctionnelle des tronçons de vallée

En référence avec la littérature existante (COHEN, 1998, SOUCHON et *al.*, 2000, SEELBACH et *al.*, 1997) et avec le projet de norme CEN prEN 14614 : 2004 relatif à « *The water quality - Guidance standard for assessing the hydromorphological features of rivers* », il nous est apparu opportun de définir **le tronçon de vallée** comme l'unité de base de l'évaluation.

Cette sectorisation effective des masses d'eau en tronçons de vallée a été menée en combinant trois couches d'information :

❖ Le linéaire de masse d'eau en tant qu'échelle d'analyse officielle de la qualité écologique des cours d'eau (et donc de la qualité hydromorphologique) dans la DCE ;

- ❖ Le linéaire de types physiques fonctionnels qui amène une première sectorisation du linéaire des masses d'eau ;
- ❖ Le rang des cours d'eau (ordination de Strahler) qui permet un second découpage assez fin en tronçons de vallée homogènes en termes de taille des cours d'eau, de prise en compte du gradient amont / aval et du régime hydrologique.

Caractérisation et définition des types fonctionnels

Ce chapitre fait notamment référence à l'étude de MOY. J, GUYON. F, COGELS. X (2004) réalisée dans le cadre du programme PIRENE.

S'inspirant des travaux de COHEN (1998), eux-mêmes basés sur ceux de CUPP (1989) aux USA, cette première sectorisation a permis la définition d'une typologie fonctionnelle simplifiée reposant sur les variables de classification suivantes :

- la pente de la vallée, reflétant le degré d'énergie des cours d'eau, est une variable de contrôle essentielle de la dynamique fluviale ;
- la largeur du fond de vallée et la pente des versants déterminent le type de vallée, qui a aussi un rôle majeur de contrôle géomorphologique (espace de mobilité, espace d'expansion des crues, apports d'éboulis de versant, etc.);
- la lithologie du fond de vallée, qui contrôle aussi les possibilités d'érosion latérale, donc la dynamique fluviale et écologique. Elle est souvent le reflet des types de substrat qui occupent le fond des cours d'eau;
- le style fluvial, qui permet d'appréhender l'écoulement ;
- la largeur du lit mineur joue un rôle fonctionnel important tant au niveau des processus physiques qu'écologiques.

Cette première sectorisation vise surtout à rechercher les **grandes ruptures géomorphologiques** affectant les vallées (largeur, profil, ...) et les **principaux changements morphométriques** des cours d'eau (sinuosité, largeur, ...).

Afin de limiter le nombre théorique de types et pour respecter une signification géomorphologique, une hiérarchisation des critères a dû être effectuée. Ces critères ont donc été découpés en classes et appliqués dans l'ordre suivant : pente de la vallée, largeur du lit majeur, pentes des versants et lithologie des terrains superficiels. Des paramètres secondaires sont venus appuyer et compléter la description des types (rang, sinuosité, largeur du lit mineur). Un échantillon de plus de 100 cours d'eau répartis dans l'ensemble des 14 grands sous bassins de la Wallonie (correspondant à plus de 400 tronçons de vallée) a permis cette caractérisation typologique.

MOY et *al.* (2004) distinguent 9 types et sous-types de cours d'eau en Région wallonne. Des correspondances typologiques ont été formulées avec les types définis en France (typologie Rhin-Meuse utilisée par QUALPHY et typologie nationale plus diversifiée utilisée par le SEQ-Physique).

L'extrapolation des résultats de cette étude à l'ensemble des cours d'eau repris comme masses d'eau à l'échelle de la Région wallonne a été effectuée dans le cadre de ces deux études. En correspondance typologique avec la typologie nationale française, 7 des 9 types définis ont été retenus pour être appliqués aux cours d'eau wallons (excluant certaines variantes lithologiques de type, sans

pondération spécifique dans la typologie nationale française). Ces 7 types fonctionnels sont nommés dans le tableau ci-dessous

Types physiques fonctionnels définis en Région wallonne	Code Type (ref : typologie nat. Française Seq Physique
Cours d'eau à énergie forte des vallées en V	T122
Cours d'eau à énergie moyenne à forte des vallées en U	T212
Cours d'eau à énergie moyenne à forte des plateaux et collines à couverture superficielle caillouteuse	T215
Cours d'eau à énergie moyenne à faible des plateaux et collines à couverture superficielle argilo-limono-sableuse	T221
Cours d'eau à énergie moyenne à faible des côtes calcaires ou schisteuses	T231
Cours d'eau à énergie moyenne à faible des basses vallées calcaires ou schisteuses	T233
Cours d'eau à énergie faible des plaines d'accumulation et des collines argilo-limono-sableuses	T330

Un descriptif détaillé de ces différents types physiques de cours d'eau wallons est présenté en annexe de ce rapport. La répartition cartographique de ces types physiques pour les masses d'eau wallonnes est présentée dans l'annexe cartographique qui accompagne ce rapport.

Définition du rang des cours d'eau

Le rang de Strahler a été calculé à partir de la couche hydrographique « Masses d'eau » qui nous a été fournie par la Direction des Eaux de Surface de la DGRNE. Cette couche provient de la digitalisation du réseau hydrographique wallon à partir des fonds IGN 1/10.000. Elle comprend l'ensemble des cours d'eau classés en Région wallonne ainsi que les parties non classées pour les cours d'eau repris en tant que masses d'eau (volonté de l'administration d'intégrer les têtes de bassin). Cette couche a été toilettée afin de calculer automatiquement sous ArcView 3.1 les ordres de Strahler pour les masses d'eau (extension Strahler.avx). Ce toilettage a consisté à revoir la topologie du réseau hydrographique et d'exclure les arcs de têtes de bassin (présentant un « dangle node ») trop petit (inférieur à 500 m) pour participer à cette hiérarchisation de l'hydrographie, en accord avec les travaux de ANDRIAMAHEFA (1999).

Une longueur minimale de 2 Km a été retenue pour définir un tronçon de vallée (en référence aux travaux de Andriamahera (1999)). Ceci nous a amené parfois à regrouper des tronçons d'ordre 1 et 2 en tête de vallée.

Codification des tronçons de vallée

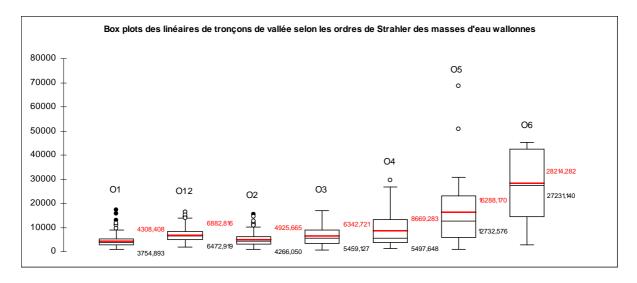
Une codification des troncons de vallée a été définie de la manière suivante :

- 5 caractères relatifs au code la masse d'eau définis par la Direction des Eaux de Surface de la DGRNE,
- 4 caractères relatifs au type physique (code Seq-Physique, typologie nationale française),
- 2 caractères relatifs à l'ordre de Strahler (O1, O2,),
- 1 caractère supplémentaire facultatif (A, B, ...) pour individualiser chaque tronçon de cours d'eau

Exemple de codification : AM01RT21501A

- AM01R : code la masse d'eau

- T215 : type physique


- O1 : ordre de Strahler
- A : identifiant spécifique du tronçon de cours d'eau (ID arc unique).

La cartographie des tronçons de vallée ainsi que celle de l'ordination de Strahler du réseau hydrographique wallon défini comme masses d'eau sont présentées dans l'annexe cartographique.

996 tronçons de vallée ont été ainsi définis pour l'ensemble des masses d'eau wallonnes. Ils se répartissent selon l'ordination de Strahler et les différents types physiques identifiés en Région wallonne de la manière suivante :

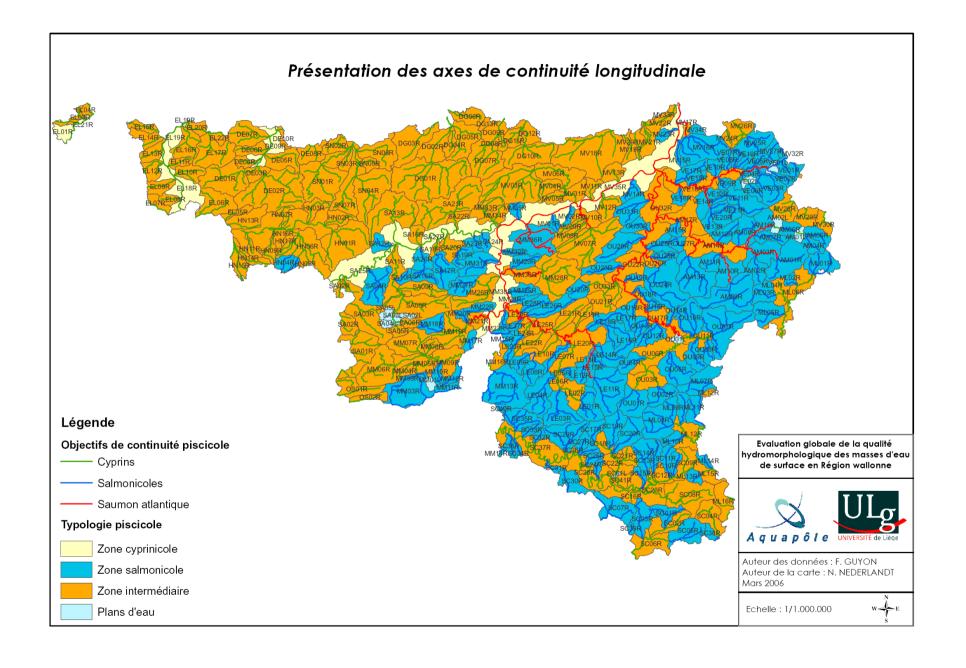
CODE TYPE	01	012	02	О3	04	O 5	O6	07	Total
T122	13	10	22	5					50
T212	23	30	52	58	13				176
T215	135	118	89	73	10				425
T221	56	42	44	28	3				173
T231				3	16	14	3		36
T233				12	14	12	2	1	41
T330	21	17	18	24	9	5			95
Total	248	217	225	203	65	31	5	1	996

Le graphique ci-dessous présente les valeurs statistiques classiques sous forme de box-plot des longueurs moyennes de ces tronçons selon l'ordination de Strahler.

2.3. Caractérisation des axes de continuité longitudinale

Ces délimitations ont été définies afin d'établir des conditions de référence spatiale de la continuité longitudinale des cours d'eau. Elles ont été établies pour trois groupes d'espèces de poissons impliquant des exigences écologiques et spatiales spécifiques en termes de libre circulation dans les cours d'eau. Le tableau ci-dessous présente ces trois objectifs spécifiques et les échelles d'analyse associées.

Axes de continuité longitudinale	Types de cours d'eau	Echelle d'analyse
Grands migrateurs : Saumon	Très grande rivière à rivière du bassin de	Groupe de masses d'eau
atlantique, Lamproie fluviatile	la Meuse *	contiguës
Espèces salmonicoles (excepté Saumon atlantique)	Masses d'eau à pente forte (typologie salmonicole) à l'exception de celles	Groupe de masses d'eau contiguës
Summer avanvique)	reprises pour les grands migrateurs	Comgaes
Autres espèces (cyprins)	Masses d'eau à pente moyenne à faible (typologies intermédiaire et cyprinicole) à l'exception de celles reprises pour les	Masse d'eau
	grands migrateurs	


^{*} à l'exception des cours d'eau des bassins de la Sambre, du Viroin et de la Semois trop éloignés de l'aval (Cf., comm. personnelle de J.C. Philippart) et des 2 Ourthe isolées par le barrage de Nisramont quasi impossible à aménager du fait de la topographie des lieux (vallée encaissée).

Selon ces modalités, un axe de continuité longitudinale est défini pour chaque masse d'eau de surface et servira de référence et de pondération dans l'outil de calcul des indices de l'élément « Continuité ». Cette caractérisation a été établie suite à des contacts avec Messieurs P. GERARD du Centre de Recherche Nature, Forêts et Bois de la Région wallonne et J.C. PHILIPPART du Laboratoire de Démographie des Poissons et d'Hydro-Ecologie de l'Unité de Biologie du Comportement (ULg).

La carte à la page suivante présente la répartition géographique de ces trois objectifs de continuité.

Remarques particulières :

- Pour les grands migrateurs, la priorité est donnée au Saumon atlantique pour lequel le projet international Saumon2000 est en cours d'application depuis de nombreuses années et les premiers résultats de remontée dans la Meuse ont été constatés récemment. La truite de mer qui colonise essentiellement les mêmes milieux que le Saumon est également concernée par cet objectif « Grands migrateurs ».
- L'anguille européenne est une autre grande espèce migratrice. Tous les cours d'eau de Wallonie sont potentiellement colonisables par cette espèce. Néanmoins, les capacités de franchissement des obstacles de cette espèce sont très particulières (possibilités de sortie à l'air libre et de contournement de l'obstacle). Les obstacles identifiés en Région wallonne (Fed. Pêcheurs de l'Est/DGRNE) ont été évalués en termes de franchissement principalement pour les espèces de type salmonicole. Ces informations ne sont pas adaptées pour évaluer les problèmes de libre circulation pour l'anguille. Pour toutes ces raisons, nous n'avons pas intégré l'anguille européenne dans cet objectif « Grands migrateurs ». Cette intégration souhaitable mériterait une étude spécifique.
- Pour les cyprins, l'échelle d'analyse de la masse d'eau a été retenue (et non le groupe de masses d'eau). Cette référence spatiale nous semble suffisante compte tenu des déplacements relativement faibles des espèces de cyprins dans les cours d'eau pour assurer leurs différents besoins (reproduction, alimentation, repos).

3. DÉFINITION ET MODALITÉS D'ESTIMATION DES CRITÈRES D'ALTÉRATION DU PROTOCOLE

3.1. Choix des critères d'altération

Ces critères d'altération ont été définis à partir d'une étude critique de trois méthodes développées en France :

- 1. L'outil QUALPHY, développé par l'Agence de l'Eau Rhin Meuse et testé en Région wallonne sur de nombreux cours d'eau : Meuse, Sambre, Ourthe, Lesse, Vesdre, Semois et affluents, Dendre, Senne, Escaut, Haine (GUYON et *al.*, 2003(a) (b) ; MOY et *al.*, 2004).
- 2. L'outil SEQ-Physique est à considérer comme une variante de l'outil QUALPHY qui fait suite à des études de validation de l'outil QUALPHY par d'autres Agences de l'eau françaises. La méthodologie générale est la même mais certains paramètres ont été ajoutés (notamment ceux relatifs à l'hydrologie) ou précisés.
- 3. Le Réseau d'Observation des Milieux (ROM) et/ou le Réseau d'Expertise des Habitats (REH), développés par le Conseil Supérieur de la Pêche (CSP) en France. Ces outils orientés « habitats piscicoles » impliquent un inventaire des perturbations ayant un impact significatif sur le milieu aquatique. Le REH développé par le CSP de Loire Bretagne présente une structuration des paramètres d'évaluation très proche de celle qui est demandée par la DCE.

L'analyse critique de ces méthodes a porté tant sur le choix des paramètres que sur leur importance (poids selon le type) dans le calcul des indices de qualité physique.

La méthode à mettre en place doit également correspondre à la demande de l'administration qui souhaite obtenir « <u>un système pratique, financièrement réalisable et techniquement faisable</u> ». Cet impératif implique une utilisation maximale des données existantes et notamment des diverses couches informatiques SIG et photographies aériennes développées en Région wallonne. Un inventaire des différentes couches existantes a été mené afin d'envisager leur utilisation dans la construction de critères d'altération.

Six critères d'altération ont été définis pour les trois éléments fixés dans la DCE. Le tableau figurant à la page suivante, présente pour chacun des trois éléments de la qualité hydromorphologique et de leurs descripteurs fixés dans la DCE, les informations suivantes :

- Les pressions concernées,
- Les impacts sur l'habitat physique potentiellement engendrés par ces pressions,
- Les critères d'altération en lien avec ces impacts et pressions,
- Les échelles d'analyse.

Remarque:

Conformément à un souhait du commanditaire de cette étude, ce choix de critères intègre une non redondance des critères et des métriques de calcul dans différents éléments, ciblant ainsi les impacts directs des altérations majeures définies. Ce souhait correspond à un souci de clarté et de lisibilité des problèmes majeurs inventoriés et évalués. Les six critères ont été définis dans ce sens et sont à considérer comme caractérisant l'état de paramètres clés du fonctionnement hydromorphologique des cours d'eau. Les impacts indirects de ces altérations n'ont donc pas été directement repris dans cette grille d'analyse. Par exemple, les masses d'eau fortement chenalisées qui généralement engendrent des impacts indirects sur l'hydrologie n'ont été pénalisées que pour le critère « Chenalisation du lit mineur » de l'élément « Morphologie ». Ce biais de l'évaluation est partiellement compensé par les principes de calcul des indices qui reprennent le système d'évaluation de l'élément le plus pénalisant pour définir la qualité globale de la masse d'eau.

Tableau de présentation des critères d'altération de la qualité hydromorphologique des masses d'eau wallonnes

Eléments	Descripteurs	Pressions concernées	Description de l'altération de l'habitat	Critères d'altération
		Barrages et ouvrages hydroélectriques	Perturbation du cycle hydrologique annuel et rupture du transport solide	Stabilité du cycle hydrologique
-0GE	Quantité et dynamique du débit	Contrôle des écoulements (navigation)	Perturbation du cycle hydrologique journalier (éclusées)	
HYDROLOGIE		Transfert vers canaux	Accentuation des étiages	Perturbation du débit d'étiage
_	Connection avec les eaux souterraines	Prises d'eau et dérivations		
	narneur riviere	Travaux de chenalisation, mise à gabarit et ouvrages hydrauliques pour navigation	Réduction / suppression de la diversité et de l'abondance des habitats du lit mineur - Homogénéisation des écoulements, des largeurs, des profondeurs et de la sinuosité du lit - Risque d'instabilité du lit (enfoncement non naturel)	Chenalisation du lit mineur
MORPHOLOGIE	Structure de la rive	Travaux d'aménagement des berges	Artificialisation des berges	Nature des berges
M		Travaux d'entretien de la ripisylve, plantations des berges (enrésinement,)	Perturbation de la biodiversité et de la stabilité des berges	Continuité de la ripisylve
_	Continuité longitudinale du lit mineur	Obstacles sur masses d'eau	Perturbation de la libre circulation des poissons	Obstacles

3.2. Définition des critères d'altération

3.2.1. Les critères d'altération relatifs à l'élément « Hydrologie »

Les pressions pouvant occasionner un impact significatif sur l'hydrologie des cours d'eau wallons sont principalement : les prises d'eau potabilisables et industrielles, les grands barrages et les transferts d'eaux de surface dans les canaux. En regard de cette analyse, le canevas méthodologique a défini deux critères d'altération concernant l'élément « Hydrologie » mentionné dans la DCE :

- 1. « <u>Stabilité du cycle hydrologique</u> » en référence à une variabilité naturelle saisonnière du régime hydrologique des cours d'eau. Des ouvrages hydrauliques tels que des barrages réservoirs ou à vocation hydroélectrique peuvent avoir des fonctionnements engendrant une homogénéisation de cette variabilité saisonnière des débits et/ou des phénomènes d'éclusées ou de lâchers entraînant un effet de marnage pouvant être préjudiciables pour la faune aquatique. A un degré moindre, les aménagements des grands cours d'eau pour la navigation peuvent également participer à cette stabilité du régime hydrologique via le contrôle des écoulements générés par les barrages et écluses.
- 2. « <u>Perturbation du débit d'étiage</u> » en relation avec le maintien nécessaire d'un certain niveau d'eau en situation d'étiage pour la faune et la flore aquatique (notion de « Débit minimum biologique »). Cet aspect est à mettre en relation avec les prélèvements en eaux de surface pour satisfaire divers usages (alimentation en eau potable, usages industriels,) et avec des débits réservés au niveau des barrages réservoirs non suffisant ou perturbant pour le milieu aquatique.

Ces deux critères d'altération du débit liquide font référence aux critères définis dans le REH français. Ils intègrent également les impacts indirects des pressions concernées sur le débit solide des cours d'eau (déficit en matériaux, phénomènes d'érosion du lit, ...).

3.2.2. Les critères d'altération relatifs à l'élément « Morphologie du lit et des berges »

Chenalisation du lit mineur

Les travaux d'aménagement du lit mineur des cours d'eau, souvent lourds, ont entraîné des impacts écologiques importants sur la faune et la flore aquatique en modifiant fortement l'habitat physique des rivières. L'impact majeur et le plus fréquent de ces aménagements sur le milieu physique d'un cours d'eau est la mise en place d'une morphologie homogène, se singularisant par rapport à celle généralement diversifiée des cours d'eau naturels.

Ces travaux sont de différentes natures : rectifications et curages dans le cadre d'assainissement et d'aménagements agricoles des fonds de vallées, rectifications liées à l'urbanisation et à la mise en place des réseaux de communication, usage de la navigation, Ces rectifications du tracé en plan des cours d'eau ont à la fois modifié la sinuosité naturelle des cours d'eau mais ont également entraîné une homogénéisation des faciès d'écoulement (suppression des radiers et des mouilles de concavité, ...) et du substrat (suppression des blocs et autres supports qui jouent un rôle très important de refuge hydraulique ou de poste d'affût pour la faune aquatique). Ce critère d'altération nous semble assez proche des paramètres « sinuosité » et « faciès » définis dans QUALPHY et le Seq Physique.

Nature des berges

Ce critère vise à mettre en évidence le degré d'artificialisation des berges suite à des aménagements d'origine anthropique (gabions, enrochements,). Une berge sera considérée comme naturelle (condition de référence) si le matériau qui la constitue est d'origine naturelle (terre, graviers, végétations, racines, ...).

L'artificialisation des berges a été appréciée en identifiant les différentes pressions exercées sur ce compartiment :

- traversée de zones d'urbanisation et protection de biens immobiliers (emmurement, canalisation, ...),
- proximité de voiries pour lesquelles leur stabilité doit être assurée,
- présence d'ouvrages d'art (ponts, ...) s'accompagnant généralement d'une artificialisation amont et aval des berges afin d'assurer une stabilité de ces ouvrages.

Continuité de la ripisylve

La végétation riveraine joue un rôle fondamental vis à vis du fonctionnement des cours d'eau. Ses fonctions sont multiples (SOUCHON et *al.*, 2000) :

- Fixation des berges,
- Refuge et frein hydraulique en crue,
- Fourniture de débris ligneux grossiers eux-mêmes structurant la morphologie des cours d'eau et servant de support / abri pour la faune et la flore aquatique,
- Fourniture de matière organique grossière aux cours d'eau,
- Filtre des apports terrestres en nutriments et en matières en suspension,
- Ombrage du lit,
- Support et abri pour la faune aquatique par les systèmes racinaires immergés.

L'analyse de cette ripisylve a été envisagée de manière globale par la cartographie de sa présence et de sa continuité le long des cours d'eau. Cette approche globale a permis d'exprimer le linéaire de chaque masse d'eau en pourcentage de ripisylve selon différentes modalités de continuité. Elle constitue un complément intéressant à l'étude fine de la ripisylve entamée par les Facultés Agronomiques de Gembloux qui caractérisent ces végétations à l'échelle stationnelle par de nombreux paramètres (Mouchet et al., 2004).

3.2.3. Le critère d'altération relatif à l'élément « Continuité»

Cet élément fait référence à la nécessaire continuité amont / aval pour les flux hydriques (régime hydrologique), pour les matériaux du lit (transport solide) et pour la faune (et la flore) aquatique (recherche de nourriture, accès aux zones de reproduction, ...).

Obstacles

Ce critère fait référence à tous les ouvrages installés dans ou en travers du cours d'eau, pouvant perturber la libre circulation des poissons et des autres espèces de la faune aquatique (et de la flore). Sont repris sous ce vocable : les barrages, les seuils, les pertuis, les étangs barrages installés en direct sur le cours d'eau, ...

Remarque:

Dans l'étude précédente, un second critère dénommé « Perturbation du débit solide » avait été défini pour cet élément. Ce critère faisait référence à la dynamique naturelle des cours d'eau qui est reconnue

comme « une composante essentielle de l'équilibre naturelle des cours d'eau » (Agences de l'eau, 1999). Ce critère est en lien direct avec les pressions mentionnées pour les deux critères relatifs à l'élément « Hydrologie » : présence de barrages réservoirs, prises d'eau. Aussi, il nous est apparu pertinent de ne pas dupliquer la prise en compte de ces altérations dans les deux éléments. Les altérations sur la continuité du transport des sédiments sont donc à considérer comme prise en compte de manière indirecte, dans les deux critères de l'élément « Hydrologie ».

3.3. Modalités d'estimation des critères d'altération

3.3.2. Les modalités de mesure des critères relatifs à l'élément « Hydrologie »

Sources des données utilisées :

- Masses d'eau de surface identifiées comme « Lacs ou barrages réservoirs » (DGRNE),
- Ordres de Strahler des cours d'eau (présente étude),
- Prises d'eau de surface potabilisables et prises d'eau industrielles importantes (RW).

Métriques :

- % de linéaire aval impacté par des grands barrages,
- % de linéaire aval impacté par des grands barrages et ayant un débit réservé estimé insuffisant,
- % de linéaire impacté par une prise d'eau importante,
- % de linéaire de cours d'eau dont l'écoulement est contrôlé par des écluses (navigation).

Les deux critères d'altération ont été estimés par avis d'expert (Paul DEWIL du SETHY, Pierre GERARD du CRNFB de la RW) pour l'ensemble des ouvrages répertoriés en Région wallonne, en identifiant les linéaires de masses d'eau impactés par les pressions significatives évoquées au point 3.2.1.

Ces linéaires impactés situés à l'aval des ouvrages ont été délimités de la manière suivante : pour un ouvrage installé sur un cours d'eau d'ordre n, l'entièreté du linéaire à l'aval de l'ouvrage est considéré comme altéré jusqu'à la prochaine confluence avec un cours d'eau du même ordre.

3.3.3. Les modalités de mesure du critère « Chenalisation du lit mineur »

Sources des données utilisées :

- Cartes de Vander Maelen (1850),
- Cartes topographiques de l'IGN (1/10.000) les plus récentes,

Métriques :

- % de linéaire présentant une modification du tracé en plan,
- % de linéaire navigué,
- Coefficient de sinuosité et écart à des valeurs de référence (présente étude).

Une approche cartographique a été menée afin d'identifier et de localiser les segments de cours d'eau qui présentent un changement majeur de leur tracé en plan en comparant les tracés des cours d'eau à l'époque de Vander Maelen (années 1850) et ceux figurant sur les cartes topographiques actuelles de l'IGN. La situation du tracé en plan des cours d'eau à l'époque de Vander Maelen constitue donc l'état de référence de ce paramètre. Ce travail cartographique a été réalisé pour toutes les masses d'eau. Signalons que pour la partie germanophone de la Wallonie non couverte par Vander Maelen, des cartes prussiennes datant de la fin du 19^{ème} siècle ont été utilisées pour cette approche cartographique.

Cette première approche de localisation des tronçons chenalisés a été complétée en intégrant l'ensemble des linéaires de cours d'eau mis à gabarit pour en assurer un usage de navigation commerciale (Meuse, Escaut, Sambre et Dendre aval). Ces grands cours d'eau navigués présentent en effet une homogénéisation très importante et entretenue des faciès d'écoulement (profondeur, vitesse) engendrant des impacts importants sur la faune et la flore aquatique.

Détermination de valeurs de sinuosité de référence

Dans le cadre de l'étude précédente, nous avions uniquement repris les pourcentages de linéaires chenalisés, établis à partir d'une analyse diachronique des tracés en plan des cours d'eau, comme métriques de calcul de l'intensité des altérations occasionnées par les travaux affectant le lit mineur.

Dans le cadre de la présente étude, il nous est apparu pertinent d'aller plus loin dans cette estimation en définissant l'écart à une situation de référence de ce tracé en plan pour les tronçons de cours d'eau rectifiés (à l'exception de ceux qui sont navigués).

Pour cela, des valeurs de référence du coefficient de sinuosité ont été calculées pour des types de cours d'eau. Ces types couplent :

- L'appartenance de tronçons de cours d'eau non chenalisés à leur région naturelle,
- Le type physique définis pour ces tronçons,
- Leur ordre de Strahler.

Les différentes combinaisons de ces trois variables ont défini ainsi 76 types.

A partir de la cartographie des tracés en plan des cours d'eau wallons, nous avons sélectionné les segments de cours d'eau ne présentant pas de modification de ce tracé en plan. Ces segments ont été découpés en segments échantillons en appliquant un facteur de longueur unique pour chaque ordre de Strahler, selon les modalités présentées dans le tableau ci-dessous :

Ordres de Strahler	Longueur des segments
	échantillons
01	250m
O2	500m
O3	750m
O4	2500m
O5	5000m
O6	5000 m

Ces longueurs échantillons ont été définies arbitrairement en vérifiant qu'au moins un train de méandres soit compris dans ces segments. Ce découpage stratifié en segments échantillons a été entrepris afin de permettre le traitement statistique des données obtenues.

3510 segments échantillons ont été ainsi sélectionnés et leur distribution selon les trois variables définissant les strates est présentée dans le tableau à la page suivante.

Tableau : Distribution du nombre de segments échantillons selon les strates de l'échantillonnage

TYPE ORDRE	ARDENNE	CONDROZ	FAMENNE	LIMONEUSE	LORRAINE	Total
T122O1	116					116
T122O2	121					121
T122O3	18					18
T212O1	138	38	13		53	242
T212O2	210	40	25		16	291
T212O3	201	43	12		7	263
T212O4	41	18	10			69
T215O1	368	192	82	31	22	695
T215O2	327	112	56	73	28	596
T215O3	99	57	23	59	32	270
T215O4	16		6	4	3	29
T221O1				131	38	169
T221O2				191	12	203
T221O3				58	20	78
T221O4				8	11	19
T231O3	12	9				21
T231O4	15	16	6			37
T231O5	27	6				33
T231O6		5				5
T233O3		8	8	21		37
T233O4				9	2	11
T233O5			4		2	6
T330O1				58		58
T330O2				51		51
T330O3				40	4	44
T330O4				14		14
T330O5					14	14
Total	1709	544	245	748	264	3510

Nous avons ensuite calculé le coefficient de sinuosité de ces segments échantillons de la manière suivante : Coeff. sinuosité = (Long. Segment) / (Long. Axe de la vallée concerné par ce segment)

L'axe de la vallée a été retenue comme métrique de calcul afin de prendre en compte la méandration de vallée de certains types de cours d'eau des vallées encaissées, naturellement peu sinueux dans leur vallée. Cet axe de vallée a été défini de la manière suivante sous SIG, en référence aux recommandations de M. Rabotin (forum ArcSig) :

- Définition de l'enveloppe théorique et historique du lit majeur des vallées à partir de la couche des alluvions extraite de celle commercialisée par le Service Géologique de Belgique – Transformation en polyline;
- Conversion de cette couche enveloppe en couche point en densifiant ces points (un tous les 10m);
- Construction des polygones de Thiessen à partir de cette couche point, puis conversion en polyline ;
- Sélection de la ligne médiane correspondant à l'axe de la vallée.

Cet axe de vallée a été défini pour l'ensemble des cours d'eau wallons repris comme masses d'eau. Il a ensuite été découpé par les limites de l'ensemble des segments rectifiés et des segments échantillons, permettant ainsi le calcul du coefficient de sinuosité.

Les valeurs statistiques classiques ont été calculées pour les données concernant les segments échantillons de référence. Le tableau ci-dessous présente ces résultats.

REGTYPORD	TYPORD	Nbre	Minimum	Maximum	1st Quartile	Median	3rd Quartile	Classes de sinuosité	Remarques
ARDT122O1	T122O1	150	1,000	1,242	1,009	1,034	1,075	Rectiligne à sinueux	
ARDT122O2	T122O2	84	1,000	1,798	1,014	1,059	1,103	Sinueux à rectiligne	
ARDT122O3	T122O3	21	1,000	1,185	1,045	1,077	1,112	Sinueux à rectiligne	
ARDT212O1 ARDT212O2	T212O1 T212O2	218 130	1,001 1,000	1,724 1,564	1,035 1,020	1,090 1,070	1,168 1,122	Sinueux à rectiligne Sinueux à rectiligne	
ARDT21202	T21202	182	1,000	2,337	1,050	1,100	1,187	Sinueux	
ARDT21204	T212O4	60	1,001	1,310	1,023	1,061	1,138	Sinueux à rectiligne	
ARDT215O1	T215O1	588	1,000	1,951	1,026	1,081	1,215	Sinueux à rectiligne	
ARDT215O2	T215O2	110	1,000	2,938	1,097	1,217	1,328	Sinueux à très sinueux	
ARDT21503	T215O3	96	1,002	2,894	1,112	1,201	1,483	Sinueux à très sinueux	
ARDT215O4 ARDT231O3	T215O4 T231O3	16 12	1,088 1,001	1,674 1,226	1,129 1,006	1,404 1,020	1,537 1,062	Très sinueux à méandriforme Rectiligne à sinueux	
ARDT23103	T23103	15	1,003	1,463	1,037	1,072	1,099	Sinueux à rectiligne	
ARDT231O5	T231O5	27	1,012	1,257	1,043	1,067	1,095	Sinueux à rectiligne	
CONT212O1	T212O1	48	1,001	1,906	1,018	1,052	1,095	Sinueux à rectiligne	
CONT212O2	T212O2	30	1,006	1,493	1,038	1,069	1,094	Sinueux à rectiligne	
CONT212O3	T212O3	43	1,000	1,553	1,054	1,082	1,147	Sinueux	
CONT212O4 CONT215O1	T212O4 T215O1	18 256	1,006 1,000	2,424 1,733	1,063 1,015	1,111 1,045	1,174 1,099	Sinueux Rectiligne à sinueux	
CONT215O2	T215O1	48	1,001	1,595	1,023	1,074	1,118	Sinueux à rectiligne	
CONT215O3	T215O3	57	1,009	1,743	1,104	1,179	1,256	Sinueux à très sinueux	
CONT22101	T221O1		1,000	1,614	1,017	1,044	1,124	Rectiligne à sinueux	Valeurs "TYPORD"
CONT22102	T221O2		1,000	2,325	1,053	1,139	1,242	Sinueux à rectiligne	Valeurs "TYPORD"
CONT22103	T221O3		1,011	2,293	1,134	1,250	1,377	Sinueux à très sinueux	Valeurs "TYPORD"
CONT231O3 CONT231O4	T231O3 T231O4	9 16	1,008 1,003	1,318 1,320	1,071 1,068	1,115 1,121	1,199 1,171	Sinueux Sinueux	
CONT23104	T23104	6	1,005	1,432	1,000	1,081	1,171	Sinueux à rectiligne	
CONT23106	T23106	5	1,009	1,013	1,013	1,03	1,079	Rectiligne à sinueux	
CONT233O3	T233O3	8	1,048	1,508	1,109	1,243	1,341	Sinueux à très sinueux	
CONT233O4	T233O4		1,028	1,542	1,210	1,254	1,381	Sinueux à très sinueux	Valeurs "TYPORD"
CONT233O5	T233O5		1,127	1,319	1,159	1,217	1,279	Sinueux à très sinueux	Valeurs "TYPORD"
CONT233O6 CONT233O7	T233O6 T233O7							Meuse et Ourthe aval Vesdre Meuse	
CONT33005	T330O5							Sambre amont	
FAMT212O1	T212O1	22	1,002	1,262	1,023	1,052	1,105	Sinueux à rectiligne	
FAMT212O2	T212O2	16	1,003	1,335	1,036	1,055	1,133	Sinueux à rectiligne	
FAMT212O3	T212O3	12	1,020	1,966	1,077	1,163	1,223	Sinueux	
FAMT212O4	T212O4	10	1,014	1,525	1,037	1,078	1,242	Sinueux à rectiligne	
FAMT215O1 FAMT215O2	T215O1 T215O2	120 18	1,001 1,013	2,028 2,336	1,071 1,039	1,140 1,132	1,257 1,280	Sinueux Sinueux à rectiligne	
FAMT21503	T215O2	23	1,021	1,693	1,150	1,219	1,512	Sinueux à méandriforme	
FAMT215O4	T215O4	6	1,037	1,420	1,086	1,162	1,205	Sinueux	
FAMT231O4	T231O4	6	1,020	1,224	1,029	1,064	1,127	Sinueux à rectiligne	
FAMT233O3	T233O3	8	1,156	1,608	1,170	1,191	1,241	Sinueux	
FAMT233O4	T233O4	_	1,028	1,542	1,210	1,254	1,381	Sinueux à très sinueux	Valeurs "TYPORD"
FAMT233O5 LIMT215O1	T233O5 T215O1	4 39	1,127 1,003	1,236 1,261	1,127 1,024	1,159 1,076	1,198 1,138	Sinueux Sinueux à rectiligne	
LIMT215O1	T215O1	65	1,000	1,750	1,036	1,114	1,315	Sinueux à rectiligne	
LIMT215O3	T215O3	37	1,001	1,665	1,066	1,187	1,304	Sinueux à très sinueux	
LIMT215O4	T215O4	26	1,018	1,848	1,097	1,202	1,284	Sinueux à très sinueux	
LIMT22101	T22101	238	1,000	1,866	1,025	1,080	1,153	Sinueux à rectiligne	
LIMT22102	T221O2	80	1,002	2,325	1,074	1,177	1,279	Sinueux à très sinueux	
LIMT221O3 LIMT221O4	T221O3 T221O4	62 8	1,002 1,140	2,037 3,011	1,115 1,237	1,224 1,496	1,334 1,603	Sinueux à très sinueux Très sinueux	+
LIMT233O3	T233O3	21	1,029	1,773	1,132	1,210	1,348	Sinueux à très sinueux	
LIMT233O4	T233O4	9	1,028	1,542	1,181	1,219	1,316	Sinueux à très sinueux	
LIMT330O1	T330O1	80	1,000	1,840	1,037	1,074	1,152	Sinueux à rectiligne	
LIMT330O2	T330O2	23	1,015	1,493	1,079	1,149	1,208	Sinueux	
LIMT330O3	T330O3	46	1,028	1,694	1,106	1,195	1,267	Sinueux à très sinueux	
LIMT330O4 LIMT330O5	T330O4 T330O5	14	1,001	1,799	1,065	1,151	1,467	Sinueux Escaut	
LORT21201	T212O1	62	1,001	1,365	1,017	1,044	1,093	Rectiligne à sinueux	
LORT21201	T21201	7	1,007	1,135	1,017	1,035	1,119	Rectiligne à sinueux	
LORT212O3	T212O3	7	1,008	1,085	1,020	1,034	1,051	Rectiligne à sinueux	
LORT21501	T215O1	26	1,006	1,646	1,025	1,060	1,127	Sinueux à rectiligne	
LORT215O2	T215O2	24	1,012	1,386	1,118	1,159	1,209	Sinueux	
LORT215O3	T215O3	32	1,040	2,124	1,155	1,214	1,388	Sinueux à très sinueux	-
LORT215O4 LORT221O1	T215O4 T221O1	3 38	1,246 1,001	2,192 1,366	1,246 1,014	1,254 1,044	1,495 1,147	Très sinueux Rectiligne à sinueux	+
LORT22101	T22101	12	1,018	1,229	1,032	1,044	1,157	Sinueux à rectiligne	
LORT22103	T221O3	20	1,032	2,293	1,113	1,300	1,455	Très sinueux	
LORT22104	T221O4	11	1,087	1,599	1,226	1,338	1,420	Très sinueux	
LORT233O4	T233O4	2	1,343	1,390	1,343	1,343	1,366	Très sinueux	
LORT233O5	T233O5	2	1,279	1,319	1,279	1,279	1,299	Très sinueux	
LORT330O3	T330O3	4 14	1,475	1,684	1,475	1,498	1,544	Très sinueux	1
LORT330O4	T330O4	14	1,125	3,851	1,299	1,389	1,473	Très sinueux	İ

Une première approche de ces conditions de référence de la sinuosité des cours d'eau a été menée pour la combinaison « Type physique – Ordre de Strahler ». Néanmoins, des différences significatives existaient à l'échelle de la région naturelle (test de Kruskall-Wallis), ce qui nous a amené à intégrer la variabilité régionale de ce paramètre.

Les cours d'eau des vallées encaissées (T122, T212, T231) ainsi que les petits cours d'eau des têtes de vallées (ordres 1 et 2) présentent naturellement des coefficients de sinuosité faibles (cours d'eau rectilignes à sinueux). Ce sont les cours des plaines et collines à couverture superficielle argilo-limono-sableuse, ainsi que les cours d'eau des plateaux sur schistes ou calcaires présentant généralement des placages limoneux en surface, qui présentent les coefficients de sinuosité les plus élevés (cours d'eau très sinueux à méandriformes).

Pour les cours d'eau identifiés comme rectifiés par l'analyse diachronique, une valeur seuil d'altération a été définie à partir de la valeur du 1^{er} quartile correspondant à la situation de référence calculée pour le type concerné. Les segments rectifiés dont la valeur du coefficient de sinuosité est inférieure à cette valeur seuil seront plus pénalisés dans le calcul des indices par le biais des pondérations associées aux états du critère. Ces segments rectifiés sont donc estimés selon deux niveaux d'altération croissants.

3.3.4. Les modalités de mesure du critère « Nature des berges»

Sources des données utilisées :

- Inventaires de terrain QUALPHY,
- Couche « Occupation des sols » (RW).
- Couche « STREET » (RW),
- Couche « Réseaux de transport » (RW).

Métriques:

- % de linéaire de berges urbanisées,
- % de linéaire de berges artificialisées.

Ce critère a été estimé en identifiant et en cartographiant les linéaires de berges naturelles ou aménagées, ou susceptibles de l'être (approche potentielle prédictive). Ainsi, les données suivantes ont été collectées pour ce critère :

- Les linéaires de berges aménagées, identifiés dans différentes études d'application de l'outil QUALPHY (Meuse, Ourthe, Lesse, Haine, Dendre, Dendre orientale, Vesdre, Sambre). Ces inventaires de terrain ont localisé chaque segment de berges aménagées.
- Les linéaires de berges situées à proximité de voiries et pour lesquels il est probable que des aménagements de protection aient été réalisés. Cette approche prédictive a été réalisée par B. NUTTENS de l'Administration des Eaux de Surface en délimitant des buffers des cours d'eau repris comme masses d'eau. La taille de ces buffers correspond à une valeur moyenne de la largeur des cours d'eau calculée à partir de données figurant dans l'Atlas des cours d'eau. Ces buffers constituent des enveloppes centrées sur l'axe du lit et ajustées sur les linéaires de berges. Ils ont été croisés avec la couche « STREET » qui reprend l'ensemble des voiries de Wallonie afin de délimiter les arcs de voiries situés à proximité du cours d'eau.

- Les linéaires de cours d'eau croisant les grands réseaux de transport (voies ferrées, routes et autoroutes). Ces croisements s'accompagnent généralement d'ouvrages de type ponts qui sont stabilisés au niveau de leurs linéaires amont et aval. Des distances arbitraires de linéaires impactés ont été définies pour chaque type de réseau de transport selon les modalités présentées ci-dessous :

Type de voiries	Linéaire impacté
Voies ferrées	50m
Autoroutes	80m
Routes nationales	40m

- Les linéaires de berges traversant des zones d'urbanisation par croisement entre la couche hydrographique des masses d'eau et la couche « Occupation des sols ». Signalons que cette couche date de 1988!

3.3.5. Les modalités de mesure du critère « Continuité de la ripisylve »

Sources des données utilisées :

- Inventaires de terrain QUALPHY,
- Plans Photographiques Numériques Communaux (PPNC) de la Direction Générale des Pouvoirs locaux (DGPL).

Métrique:

- % de continuité de la ripisylve selon 4 modalités.

Ce paramètre qui caractérise l'importance de la ripisylve est estimé, à partir des Plans Photographiques Numériques Communaux (PPNC), par une identification et une localisation cartographique de segments de ripisylve selon les quatre modalités suivantes, présentés selon une valeur croissante de leur état de perturbation :

- Une ripisylve continue à subcontinue occupe plus de 80 % du linéaire du segment (= situation de référence ;
- Présence d'une ripisylve discontinue : continuité que sur une seule berge, continuité globale entre 20 et 80 % du linéaire total du segment ;
- Présence d'une ripisylve potentielle. Celle-ci n'existe pas encore ou est à l'état arbustif. Cette situation a été notée exclusivement dans les cas de coupes forestières (notamment de résineux) et de friches herbacées sans usages, pour lesquelles une ripisylve devrait pouvoir se réinstaller spontanément (respect de la loi des 6 mètres pour les terrains forestiers);
- Absence de ripisylve ou ripisylve très clairsemée (moins de 20% du linéaire total du segment).

Pour les cours d'eau évalués par le protocole QUALPHY tel que défini par l'Agence de l'Eau Rhin-Meuse (la Meuse et les cours d'eau repris dans le programme PIRENE), un relevé précis de terrain est effectué lors de la phase d'inventaire de terrain et il a été convenu d'encoder les données plus complètes provenant de cet inventaire dans la table de données de la couche « Berges » qui centralise les informations relatives à ce compartiment. Une comparaison entre cette approche de terrain et celle réalisée à partir des PPNC (sur la Semois et sur la Lesse) a permis de valider l'approche retenue dans le protocole d'évaluation globale.

3.3.6. Les modalités de mesure du critère « Obstacles»

Sources des données utilisées :

- Couche « Obstacles » (RW),
- Couche « Moulins » (RW APERE)
- Inventaire de terrain complémentaire réalisé dans le cadre de cette étude,
- Résultats des données QUALPHY pour le bassin de la Dyle (Facultés Notre Dame de la Paix de Namur).

Métriques:

- Nombre d'obstacles infranchissables et/ou majeurs par km de linéaire de cours d'eau
- % de linéaire inaccessible pour le poisson selon l'axe de continuité longitudinale défini

Dans le cadre de l'étude précédente, ce critère avait été estimé par la métrique : Nombre d'obstacles infranchissables ou majeurs par km de linéaire de cours d'eau. Cette métrique traduit bien la fragmentation des habitats et des populations occasionnée par ces obstacles installés sur les cours d'eau. Elle est également le reflet d'altérations morphologiques affectant les masses d'eau (banalisation des faciès à l'amont des ouvrages par la rétention d'eau au droit de ces aménagements sur un linéaire plus ou moins important selon les caractéristiques de l'ouvrage et la pente du cours d'eau). L'échelle d'analyse était le tronçon de vallée avec extrapolation à la masse d'eau.

Suite à des discussions lors de la précédente convention, il avait été mis en évidence que ce dénombrement des obstacles par tronçon de vallée ne rendait pas suffisamment compte des impacts engendrés sur les communautés biologiques. En effet, ces impacts exprimés en termes de perturbation de la libre circulation des espèces et de l'accès aux sites de reproduction, sont notamment fonction de la position amont aval de ces obstacles dans la masse d'eau. Un obstacle infranchissable situé à l'aval rendra inaccessible tout son linéaire amont. Aussi, nous avons souhaité intégrer cette réflexion dans une modification de l'estimation de ce critère en y ajoutant la métrique « % de linéaire inaccessible pour le poisson ». Le tableau ci-dessous précise les modalités d'estimation des 2 métriques selon les axes de continuité longitudinale définis.

Axes de continuité longitudinale	Echelle d'analyse	Types d'obstacles concernés pour le calcul des linéaires inaccessibles (prise en compte de l'obstacle le plus en aval / échelle d'analyse)	Modalité de calcul de la métrique « Nombre d'obstacles/linéaire de la masse d'eau (L)
Grands migrateurs : Saumon atlantique, Lamproie fluviatile	Groupe de ME contiguës (bassin de la Meuse)	Infranchissables pour le Saumon Atlantique *	∑nbobst(infranchissables + majeurs*0.75)/L
Espèces salmonicoles (excepté Saumon atlantique)	Groupe de ME contiguës (typologie salmonicole)	Infranchissables	∑nbobst(infranchissables + majeurs*0.75)/L
Autres espèces (cyprins)	ME (typologies intermédiaire ou cyprinicole)	Infranchissables et majeurs	∑nbobst(infranchissables + majeurs)/L

^{*} référence à l'étude en cours de J.C PHILIPPART sur l'inventaire des aménagements prioritaires pour rétablir ou améliorer la libre circulation des poissons dans le réseau hydrographique de la Région wallonne.

Une pondération de 0.75 a été appliquée aux obstacles majeurs des cours d'eau salmonicoles ou potentiellement colonisables par les grands migrateurs afin de distinguer les possibilités de franchissement de ces obstacles dans certaines conditions de débit par rapport aux obstacles déclarés infranchissables, et cela quelles que soient les conditions. Cette pondération n'a pas été appliquée pour les cours d'eau colonisés par les cyprins car ces obstacles, déclarés majeurs en tenant compte des possibilités de franchissement essentiellement pour les salmonidés, constituent des barrières infranchissables pour ces cyprins (capacité de saut faible à nulle).

Des applications SIG (construction d'un « Geometric Network », utilisation de l'outil « Utility Network Analyst ») ont été utilisées sous ArcGis9.0 afin d'automatiser le calcul des linéaires amont inaccessibles pour le poisson en fonction de la position la plus aval de l'obstacle considéré comme perturbant selon l'objectif de continuité de la masse d'eau.

La couche « Obstacles » provenant de l'inventaire réalisé par la Fédération des Pêcheurs de l'Est pour le compte de la Région wallonne, et qui nous a été transmise par M. De BAST de la Direction des Cours d'Eau non navigables, a été utilisée pour identifier les obstacles majeurs et infranchissables installés sur les masses d'eau wallonnes. Cette couche correspond à la situation d'encodage des données collectées du mois de mai 2005 (+ compléments récents sur les cours d'eau de l'Amblève à l'amont de la cascade de Coo). Elle reprend notamment les informations relatives à l'estimation par avis d'expert de la franchissabilité de ces ouvrages selon quatre modalités : mineur, important, majeur et infranchissable. Les obstacles déclarés majeurs ou infranchissables correspondent à la situation la plus pénalisante.

Toutes les masses d'eau définies en Région wallonne ne sont pas couvertes par cet inventaire (et notamment celles de la Région Limoneuse). Des compléments de terrain ont donc été entrepris dans le cadre des deux missions confiées à l'Aquapôle, avec comme objectif d'identifier les barrages et les prises d'eau les plus importantes des masses d'eau non inventoriées, pouvant engendrer un impact significatif sur la libre circulation du poisson. Pour cela, un repérage des « sites potentiels d'obstacles » sur carte IGN est réalisé dans un premier temps afin de repérer sur ces cartes :

- Les barrages, les ouvrages de vanne symbolisés, ainsi que les étangs situés à proximité des cours d'eau et pouvant faire l'objet d'un barrage et d'une prise d'eau
- les moulins (couche SIG) pouvant faire l'objet d'un barrage et d'une prise d'eau.

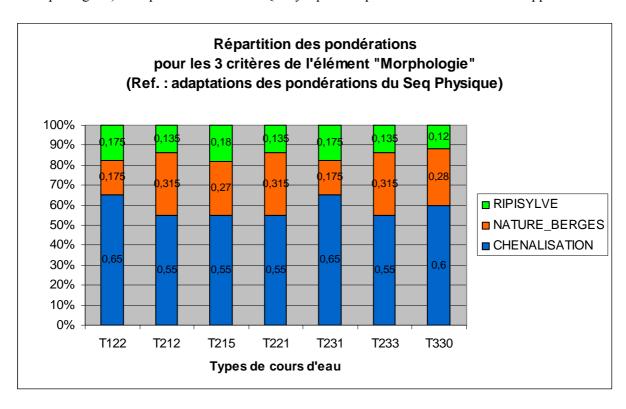
Il est important de signaler que ce complément de terrain envisagé dans le cadre de cette étude ne prétend pas remplacer le travail rigoureux et méthodique réalisé par la Fédération des Pêcheurs de l'Est mais proposer une solution incomplète mais pragmatique et répondant aux contraintes de temps fixées dans la présente convention d'étude. Cette analyse pourra être affinée au fur et à mesure de l'avancement de l'inventaire officiel et complet des obstacles en Région wallonne.

4. MODALITÉS D'ÉVALUATION DE LA QUALITÉ HYDROMORPHOLOGIQUE DES MASSES D'EAU

4.1. Principes de construction des indices de qualité et d'évaluation globale

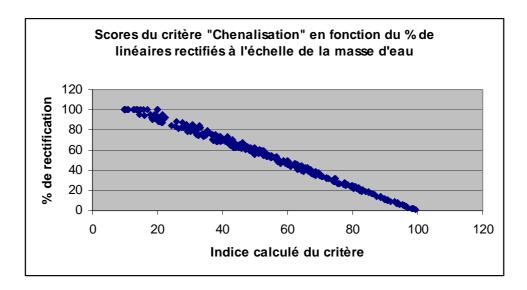
Le système d'évaluation permettant l'obtention d'indice de qualité hydromorphologique repose sur les principes suivants :

- Un indice global a été calculé pour chacun des trois éléments du volet hydromorphologique défini dans la DCE (pour rappel : Hydrologie, Morphologie et Continuité). Cet indice est calculé par tronçon de vallée puis extrapolé à la masse d'eau (une masse d'eau comportant généralement plusieurs tronçons de vallée). Des indices partiels pour chacun des critères ont également été calculés aux échelles de la masse d'eau et du tronçon de vallée afin de pouvoir visualiser les critères les plus pénalisant qui expliquent la note globale.
- La classification de l'état hydromorphologique de la masse d'eau reposera sur le principe du score d'indice de la masse d'eau le plus pénalisant des trois éléments. Cette classification se cale sur les cinq classes de qualité définies dans la DCE, à savoir : 0 − 20%, 20 − 40%, 40 − 60%, 60 − 80% et 80 − 100% (cette dernière classe correspondant à une très bonne qualité hydromorphologique). Le seuil de 40% du résultat de l'indice global a été fixé pour désigner une masse d'eau comme fortement modifiée.
- Le système d'évaluation est à considérer comme un système hiérarchique : un élément comprend généralement plusieurs critères d'altération, eux-mêmes estimés selon un ou plusieurs états de perturbation.
- A l'exception des critères « Nature des berges » et « Obstacles » qui ont fait l'objet d'une estimation particulière, chacun des états de perturbation d'un critère se voit attribué un poids dont la somme est égale à 1. Ces valeurs de poids sont calculées selon une progression, pour que la discrimination soit maximale. La situation la plus défavorable pour le critère reçoit évidemment la valeur la plus faible. Ces valeurs sont reprises et/ou adaptées de celles attribuées dans les outils SEQ-Physique ou QUALPHY. Le tableau à la page suivante, présente les différents états de perturbation des différents critères définis dans cette méthodologie, leurs métriques de calcul, ainsi que leurs pondérations d'altération.
- Pour chaque critère, un indice partiel de qualité est calculé pour chaque tronçon de vallée (score critère). Il correspond au rapport entre la valeur calculée et la valeur de référence. La valeur calculée correspond à la somme du produit des linéaires concernés par chaque état de perturbation du critère avec les pondérations associées à ces états. La valeur de référence correspond au produit de la pondération associée à l'état de référence du critère avec le linéaire total du tronçon. Cet indice partiel reflète l'état de perturbation du critère pour le tronçon considéré.
- Indice calculé d'un élément (E) à l'échelle de la masse d'eau = ∑ Score critères (E) * Pondération type * (Long tronc / Long masse d'eau). Ce système de calcul est le reflet de la méthodologie LxIxS évoquée précédemment.


Tableau : Etats, pondérations et métriques de calcul des différents critères d'altération des éléments "Hydrologie" et "Morphologie"

Eléments	Critères d'évaluation	Etats de perturbation	Code altération	Pondérations états de perturbation	Métriques de calcul
		Situation non perturbée	CONDREF	0.825	
GIE	Stabilité du cycle hydrologique	Contrôle des écoulements pour la navigation	ALTER1	0.15	%linéaire
ОГО		Présence de grand barrage en amont ou de prise d'eau importante	ALTER2	0.025	
HYDROLOGIE	Perturbation du débit d'étiage	Pas d'influence décelable du facteur de perturbation	CONDREF	0.952	%linéaire
_	•	Prélèvements importants : débit réservé trop faible, prise d'eau importante, transfert vers canaux,	ALTER1	0.048	
		Tracé en plan non modifié	CONDREF	0.75	
	Chenalisation du lit mineur	Tracé en plan modifié et écart faible à la sinuosité de référence	ALTER1	0.15	% linéaire
		Tracé en plan modifié et écart fort à la sinuosité de référence	ALTER2	0.075	
		Mise à gabarit (navigation)	ALTER3	0,025	
OGIE		Berges naturelles	CONDREF	0	
MORPHOLOGIE	Nature des berges	Berges urbanisées	ALTER1	0,75	% de linéaire
MORF		Berges artificialisées	ALTER2	1	
		Ripisylve continue	CONDREF	0.5	
	Continuité de la ripisylve	Ripisylve discontinue	ALTER1	0.325	% de linéaire
		Ripisylve potentielle	ALTER2	0.15	
		Absence de ripisylve	ALTER3	0.025	

Chaque critère de chaque élément se voit attribuer une seconde pondération liée au type physique concerné. Ces pondérations expriment la sensibilité de cet élément et des compartiments de l'écosystème aquatique qu'il comprend aux altérations qui l'affectent. La somme de ces pondérations est égale à 1 pour chaque élément.


Aucune différence typologique n'a été appliquée pour les deux critères de l'élément « Hydrologie » car aucune correspondance de nos critères avec ceux de l'outil SEQ-Physique n'a pu être établi. Une pondération unique quel que soit le type de 0,4 pour le critère « Perturbation du débit d'étiage » et de 0,6 pour le critère « Stabilité du cycle hydrologique » a été appliquée arbitrairement.

Le graphique ci-dessous présente les valeurs utilisées dans notre étude pour les critères de l'élément « Morphologie ». Ces valeurs sont reprises et/ou adaptées de celles attribuées dans les outils SEQ-Physique V0' (importance des compartiments « Berges » et « Lit mineur » pour l'élément « Morphologie »). Ces pondérations du SEQ-Physique sont présentes en annexe de ce rapport.

4.2. Influence des pondérations sur le calcul des indices

Nous avons également souhaité comprendre l'influence des systèmes de pondération des critères sur le calcul des indices. Le graphique ci-dessous présente la relation entre les scores calculés pour un critère (« Chenalisation du lit mineur) et le pourcentage de linéaires rectifiés calculés à l'échelle des masses d'eau.

Ce graphique met en évidence une relation linéaire entre les scores calculés par l'outil de calcul incluant les deux systèmes de pondération. Un score de 40% correspond globalement à un linéaire rectifié de 70% à l'échelle des masses d'eau. Rappelons que cette valeur de 40% de l'indice (correspondant à une qualité mauvaise) a été définie comme seuil supérieur de détermination des masses d'eau fortement modifiées. Le pourcentage de 70% d'altération correspondant à cette valeur seuil est similaire avec les modalités de définition des MEFM adoptées par d'autres institutions européennes en charge de l'application de la DCE, et notamment en France.

Néanmoins, cette relation entre le pourcentage d'altération et les scores calculés ne nous est pas apparue pertinente pour le critère « Nature des berges ». Un pourcentage de berges artificialisées moins important constitue déjà un impact fort sur l'écosystème aquatique. Ainsi, nous avons modifié les modalités de calcul des indices de ce critère en définissant une relation exponentielle entre les deux variables selon l'équation suivante appliquée à l'échelle du tronçon de vallée :

Score (Nature des berges) = 94,984*Exp([-0,02*(%lin.artificialisé+0,75*%lin.urbanisé)]

Cette équation a été définie à partir de la distribution des linéaires altérés de ce critère. Un pourcentage de 40% de linéaire altéré correspond à un indice de 40%. Ce seuil de 40% de linéaire altéré nous semble mieux représenter les impacts générés par ces aménagements des berges. Une pondération spécifique a été définie pour moins pénaliser les linéaires de berges urbanisées (0,75) provenant d'un croisement sous SIG des zones d'urbanisation avec les masses d'eau. Dans la réalité de terrain, ces linéaires urbanisées ne sont pas généralement totalement artificialisées (zones de jardins, ...). Ainsi, cette pondération moins pénalisante peut compenser ce biais issu du traitement SIG des données.

Le tableau ci-dessous présente les relations entre l'intensité des altérations des critères des éléments « Hydrologie » et « Morphologie », et les scores attribués à ceux-ci à l'échelle de la masse d'eau, en fonction des pondérations définies.

Critères d'altération	Equations de régression	% de linéaire altéré correspondant au seuil de 40% de la valeur d'indice
Stabilité du cycle hydrologique	Ind. (critère) = 99.864- 0.9041x %lin.altéré	66%
Perturbation du débit d'étiage	Ind. (critère) = 99.933 – 0.9469x %lin.altéré	63%
Chenalisation du lit mineur	Ind. (critère) = 99.769 - 0.8515x %lin.rectifié(sauf navigué)	70%
Nature des berges	Ind. (critère) = 94,984*Exp([-0,02* (%lin.artificialisé+0,75*%lin.urbanisé)]	40%
Continuité de la ripisylve	Ind. (critère) = 83.564 – 0.7842x %lin.absence ripisylve	55%

4.3. Cas particulier de l'évaluation de l'élément « Continuité »

Le critère « Obstacles » qui caractérise cet élément fait l'objet d'une évaluation particulière. Pour rappel, ce critère est évalué à l'échelle de la masse d'eau et non à celle du tronçon de vallée comme les autres critères de cette méthodologie, et résulte de la combinaison de deux métriques :

- le nombre d'obstacles majeurs et/ou infranchissables par rapport au linéaire total de la masse d'eau,
- le pourcentage de linéaire inaccessible pour le poisson en fonction de la position la plus aval de l'obstacle

Cette combinaison de deux métriques ne nous a pas permis de construire un indice calculé pour chaque masse d'eau. Nous avons opté pour une grille d'évaluation se présentant sous la forme d'un tableau à double entrée précisant au croisement des lignes et des colonnes les classes de qualité. Cette grille d'évaluation est présentée ci-dessous :

	Classes du Nombre d'obstacles par Km total de la masse d'eau			
Classes % linéaire inaccessible	0	0 – 0,2	0,2 - 0,5	≥0,5
0-30%	Qualité très bonne	Qualité bonne	Qualité bonne	Qualité moyenne
30 – 70%	Cas impossible	Qualité moyenne	Qualité moyenne	Qualité mauvaise
70 – 100%	Qualité moyenne	Qualité moyenne	Qualité mauvaise	Qualité très mauvaise

Une masse d'eau sans obstacle peut quand même présenter une qualité moyenne car l'entièreté de son linéaire devient inaccessible du fait de la présence d'un obstacle infranchissable dans la masse d'eau aval (ces deux masses d'eau faisant partie du même axe de continuité longitudinale et l'échelle d'analyse étant, dans ce cas, le groupe de masses d'eau contiguës).

Les limites de classes de la métrique «% de linéaire inaccessible » ont été définies de manière arbitraire. Celles de la métrique « Nombre d'obstacles / Km de masse d'eau » résultent de la distribution de cette variable pour l'ensemble des masses d'eau.

Rappel important:

Cette grille d'évaluation est unique pour l'ensemble des masses d'eau définies en Région wallonne. Néanmoins, elle fait référence à des métriques qui sont calculées de manière différente selon les axes de continuité longitudinale définis pour ces masses d'eau.

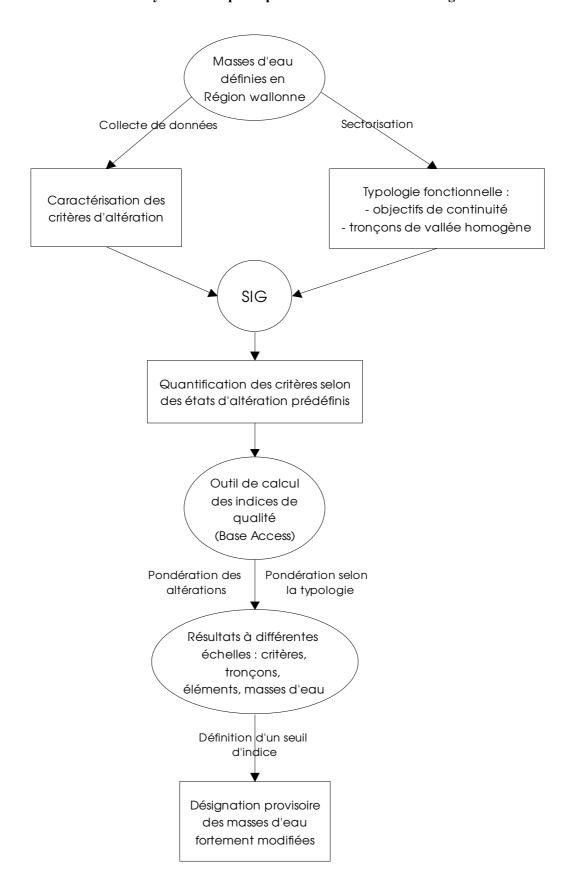
4.4. La structuration des données sous SIG

La collecte des données permettant la quantification des différentes métriques associées aux critères implique l'utilisation d'un SIG. L'ensemble des données collectées a été structuré selon différentes classes d'entités exprimant différents niveaux d'échelle d'analyse :

- des données ponctuelles (Ex. : obstacles, prélèvements d'eau) ;
- des données linéaires (polyline) relatives aux différentes altérations affectant le lit mineur et les berges des masses d'eau;
- ❖ des données surfaciques (polygones) : le bassin versant (= la masse d'eau).

Remarques:

Chaque couche de données contient les informations d'identification au code de la masse d'eau concernée (CODE_ME), au code de typologie physique défini dans cette étude (CODE_TYPE) et à un code d'identification unique des tronçons de vallée (NUM_TRONC) afin de pouvoir rassembler et analyser toutes ces données selon les deux échelles d'analyse (tronçon de vallée et masse d'eau).


Une couche « Berges » a été élaborée afin d'y reporter les données pertinentes concernant l'état de la nature des berges et de la continuité de la ripisylve. Elle a été constituée en distinguant les rives droite et gauche pour les rivières, grandes rivières et très grandes rivières pour lesquelles une double polyline avait été digitalisée dans une ancienne version de la couche « Hydro ». Ces doubles polylines n'ont été reprises dans la couche que dans les cas où elles couvraient l'entièreté d'un cours d'eau compris dans une masse d'eau. Pour les ruisseaux et pour certaines rivières à doubles polylines incomplètes, nous avons repris les arcs de la couche « Masses d'eau » qui nous a été transmise par la DGRNE. Pour ces cas, aucune distinction des rives n'a pu être réalisée.

La quantification des métriques de calcul caractérisant les différents états des critères a été réalisée dans le SIG en utilisant la fonction « Frequency » de ArcToolBox pour chacune des deux échelles d'analyse. Ces fréquences sont exportées directement dans une base de données Access. L'élaboration d'un schéma de relations entre ces différentes tables de données a permis d'élaborer diverses requêtes de calcul des indices, associant les fréquences des états aux deux systèmes de pondération (pondération des états d'altération et pondération selon les types physiques des cours d'eau). Ces requêtes ont permis un calcul automatisé et dynamique de différentes valeurs d'indices :

- Les valeurs d'indice des critères aux échelles du tronçon de vallée et de la masse d'eau (0 100%)
- Les valeurs d'indice des éléments à ces deux mêmes échelles (0 100%),
- Les valeurs d'indice des tronçons de vallée (0 100%),
- Les valeurs d'indices des masses d'eau (0 100%).

Le schéma à la page suivante résume de manière synthétique la méthodologie développée dans cette étude et les principes de calcul des indices.

Schéma de synthèse des principes de calcul de la méthodologie

CHAPITRE II:

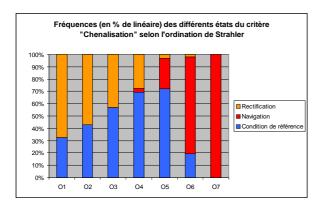
APPLICATION DE LA MÉTHODOLOGIE À LA TOTALITÉ DES MASSES D'EAU DE SURFACE WALLONNES

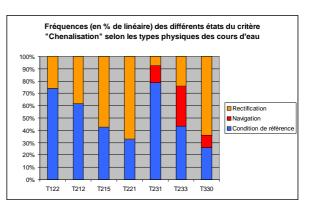
ANALYSE DES RESULTATS OBTENUS

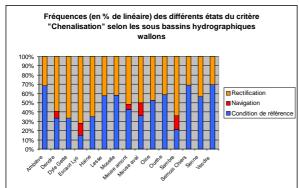
1. ESTIMATION DES CRITÈRES D'ALTÉRATION

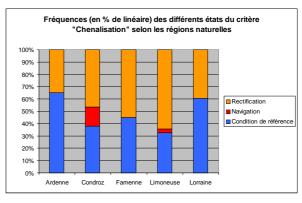
1.1. Critères de l'élément « Hydrologie »

Les résultats de la cartographie relative aux deux critères de cet élément sont présentés dans l'annexe cartographique de ce rapport. Le tableau ci-dessous, présente ces pressions et impacts pour les 2 grands bassins hydrographiques wallons.

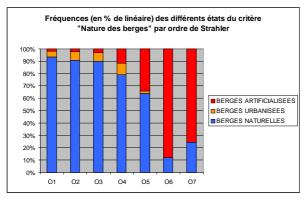

Bassin hydrographique	Code Masse d'eau	Pressions	Impacts	
	EL18R	Navigation	Contrôle des écoulements (navigation)	
	EL19R	Navigation	Contrôle des écoulements (navigation)	
	DE03R	Prise d'eau	Déficit hydrologique	
ESCAUT	DE09R	Navigation	Contrôle des écoulements (navigation)	
	SN07R	Transfert vers canaux	Perturbation du régime hydrologique et déficit hydrologique	
	SN04R	Transfert vers canaux	Perturbation du régime hydrologique et déficit hydrologique	
	HN16R	Transfert vers canaux	Perturbation du régime hydrologique et déficit hydrologique	
	SA25R	Navigation	Contrôle des écoulements (navigation)	
	SA27R	Navigation	Contrôle des écoulements (navigation) et perturbation du régime hydrologique	
	SA13R	Transfert vers canaux	Perturbation du régime hydrologique et déficit hydrologique	
	SA11R	Barrage réservoir	Perturbation du régime hydrologique	
	SA08R	Barrage réservoir	Perturbation du régime hydrologique	
	MM39R	Barrage réservoir	Perturbation du régime hydrologique	
MEUSE	MM38R	Navigation	Contrôle des écoulements (navigation)	
	MV35R	Navigation	Contrôle des écoulements (navigation)	
	MV35R	Prise d'eau (Tailfer)	Déficit hydrologique	
	MV35R	Prise d'eau (Tihange)	Déficit hydrologique	
	MV35R	Transfert vers canaux	Déficit hydrologique	
	VE01R	Prise d'eau	Déficit hydrologique	
	VE04R	Barrage réservoir	Perturbation du régime hydrologique	
	VE18R	Barrage réservoir	Perturbation du régime hydrologique	
	AM06R	Barrage réservoir	Perturbation du régime hydrologique	
	AM16R	Barrage réservoir	Perturbation du régime hydrologique	
	AM16R	Prise d'eau	Perturbation du régime hydrologique et déficit hydrologique	
	LE11R	Prise d'eau	Déficit hydrologique	
	SC41R	Barrage réservoir	Perturbation du régime hydrologique et déficit hydrologique	

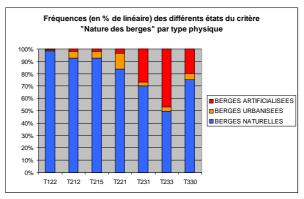

Aucune perturbation significative de l'hydrologie des cours d'eau wallons du bassin du Rhin n'a été identifiée.

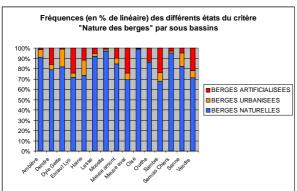

1.2. Elément « Morphologie du lit mineur et des berges »

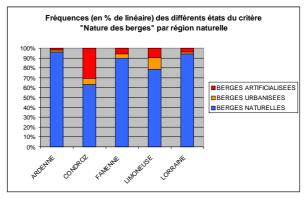

1.2.1. Critère « Chenalisation du lit mineur »

La cartographie des linéaires chenalisés par comparaison du tracé en plan actuel avec la situation de 1850 (voir annexe cartographique) a permis de calculer les % de ces linéaires par tronçons de vallée et par masses d'eau. Ces valeurs ont pu être confrontées avec quatre variables descriptives du réseau hydrographique wallon, tels que le montrent les graphiques ci-dessous :

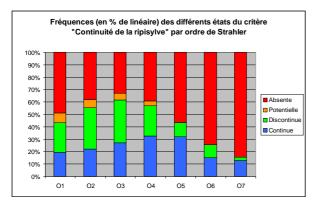

Les graphiques ci-dessus mettent en évidence les points suivants :

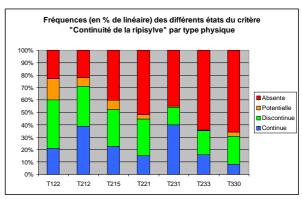

- ❖ La rectification des cours d'eau a concerné majoritairement les petits cours d'eau (ordres 1 et 2). Ceci peut s'expliquer par le fait que ces ruisseaux sont plus facilement aménageables que les grands (contraintes techniques). De plus, il faut signaler que ces petits cours d'eau sont souvent occupés par des wateringues (syndicat de drainage) dont le but a été d'améliorer la production agricole des terrains (rectifications, drainage,). Les grands cours d'eau wallons (O6 et O7) sont quant à eux fortement influencés par l'usage de la navigation.
- ❖ Elle concerne principalement les cours d'eau de plateaux et de collines (T215, T221) présentant des substrats argilo-limono-sableux (substrat en place ou placage limoneux sur des terrains plus anciens) que l'on retrouve essentiellement dans la Région limoneuse, la Lorraine belge et les têtes de bassin des autres régions naturelles wallonnes. Les cours d'eau de plaine à énergie faible des bassins de l'Escaut et de la Dendre (T330) sont également majoritairement concernés. Les cours d'eau des vallées encaissées, généralement moins sinueux dans leur vallée, sont nettement moins touchés.


❖ Ces rectifications concernent principalement les cours d'eau des sous bassins Escaut-Lys, Dendre et Dyle-Gette en Région Limoneuse, et ceux des sous bassins de la Haine et de la Sambre pour le bassin de la Meuse (plus de 60% de linéaire de cours d'eau chenalisés).

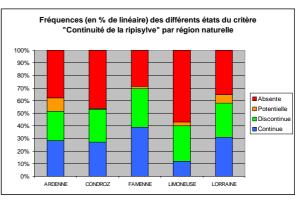

1.2.2. Critère « Nature des berges »

Les graphiques ci-dessous présentent les fréquences des différents états de ce critère selon les quatre variables descriptives des masses d'eau wallonnes utilisés pour le critère précédent.



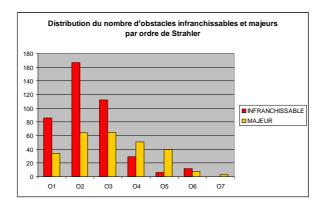

Les altérations de la nature des berges touchent principalement les grands cours d'eau (O5 à O7). Les types T231, T233 et T330 sont les plus concernés par ces altérations. Ces trois types correspondent à ceux des cours d'eau du sillon Sambre et Meuse et de l'Escaut fortement urbanisés et industrialisés (zones de Charleroi, Namur, Liège). Ce constat se répète à la lecture des graphiques relatifs aux régions naturelles et aux sous bassins.

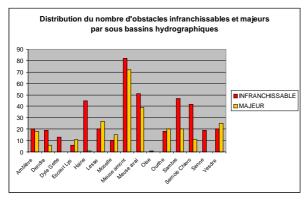
Les sous bassins les moins altérés de Wallonie sont ceux de la Lesse et Semois-Chiers.

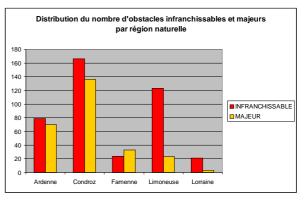

1.2.3. Critère « Continuité de la ripisylve »

Les graphiques ci-dessous présentent les fréquences des différents états du critère « Continuité de la ripisylve » selon les quatre variables descriptives des masses d'eau wallonnes utilisées précédemment pour les deux autres critères de l'élément « Morphologie ».

Les cours d'eau en vallée marquée (T122, T212) à énergie moyenne à forte présente le maximum de % de ripisylve continue et discontinue. Ceci s'explique par l'occupation des sols majoritairement forestière de ces vallées encaissées, par une faible urbanisation et par la quasi absence de cultures dans ces fonds de vallée. Les % de ripisylve absente les plus importants se rencontrent pour les cours d'eau vallée large (T330 et T233) et pour les cours d'eau des collines argilo-limono-sableuses (T221). Ces types de cours d'eau sont surtout présents dans la région limoneuse (et dans la lorraine belge) caractérisée par une occupation des sols majoritairement dominée par l'agriculture (cultures et pâtures) et par l'urbanisation des vallées. Signalons également la relativement faible proportion de ripisylve pour les cours des côtes calcaires ou schisteuses (T231) caractérisés par des vallées encaissées en U occupés majoritairement par des pâtures ou des peuplements de résineux (exemple de la Semois ardennaise) laissant peu de place à la ripisylve.

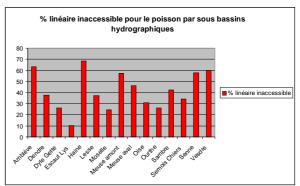

Les ripisylves continues à discontinues sont surtout présentes pour les ordres 3 et 4 (rivières et gros ruisseaux). Elles régressent fortement pour les grands cours d'eau (ordres 5 à 7). Les petits cours d'eau des têtes de bassin (ordres 1 et 2) présentent une proportion de ripisylve continue à discontinue relativement faible (40 à 50%), probablement due à leur situation dominante en plateau agricole.


L'absence de ripisylve est la plus importante pour les cours d'eau du sous bassin de l'Escaut (près de 80%) alors qu'elle est minimale pour le sous bassin de la Lesse (moins de 30%). La région limoneuse est la plus concernée par cette disparition de la ripisylve le long des cours d'eau (60%).


1.3. Elément « Continuité »

678 obstacles sont identifiés sur les cours d'eau wallons repris comme masses d'eau, se répartissant de la manière suivante : 413 déclarés comme infranchissables pour toutes les espèces et 265 déclarés comme majeurs, c'est-à-dire qu'ils ne sont franchissables que pour certaines espèces et dans des conditions de débit particulières.

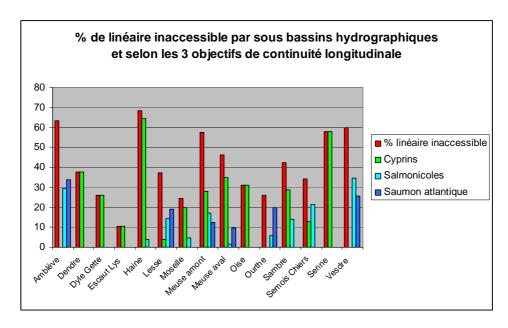
Les graphiques ci-dessous mettent en évidence la distribution du nombre d'obstacles infranchissables et majeurs selon trois variables : l'ordination de Strahler, la région naturelle et le sous bassin hydrographique.



Ce sont les ruisseaux (ordres 1 à 3) qui sont les plus touchés par ces obstacles. Ces petits cours d'eau jouent un rôle essentiel pour la reproduction des salmonidés (ruisseaux frayères) et l'impact de ces obstacles en termes de limitation de l'accessibilité des salmonidés à leurs zones de reproduction est un problème majeur qu'il serait pertinent de traiter dans les plans de gestion.

Les sous bassins de la Meuse (amont et aval), de la Haine, de la Sambre et de Semois – Chiers comprennent le plus d'obstacles infranchissables ou majeurs. A l'échelle de la région naturelle, c'est le Condroz (qui comprend le sillon Sambre et Meuse) qui est le plus impacté par ces obstacles.

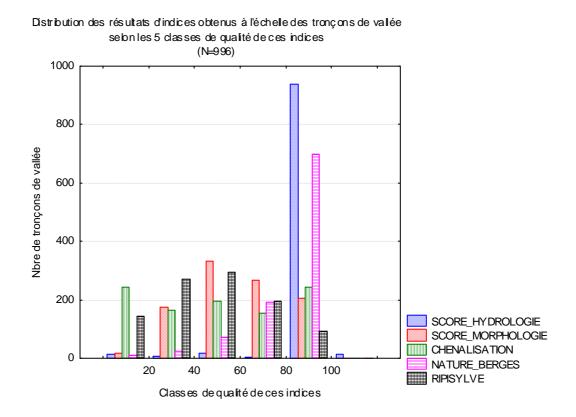
Les graphiques ci-dessous présentent les résultats obtenus pour la métrique « % de linéaire inaccessible pour le poisson » selon les différents sous bassins hydrographiques wallons et selon les trois axes de continuité longitudinale définis dans cette étude.



Les cours d'eau potentiellement colonisables par les grands migrateurs comme le Saumon atlantique sont les plus impactés par la présence d'obstacles infranchissables pour cette espèce. Néanmoins, des actions d'aménagement de ces obstacles sont prévus très prochainement : l'équipement du barrage des Grosses Battes sur l'Ourthe aval par une passe à poisson efficace va permettre l'accès à cette espèce d'un très grand linéaire amont.

Les sous bassins les plus impactés par la présence en aval des cours d'eau d'obstacles infranchissables sont ceux de l'Haine, de l'Amblève, de la Meuse amont et aval, de la Senne et de la Vesdre.

Le graphique ci-dessous synthétise ces deux types d'informations en faisant apparaître, pour chaque sous bassins, les parts respectives de % de linéaire inaccessible selon les 3 axes de continuité longitudinale.

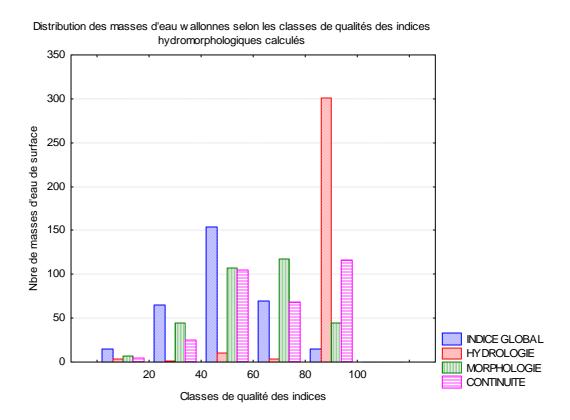


Une analyse plus complète de cette métrique, à l'échelle du bassin hydrographique serait pertinente. De nombreux cours d'eau wallons ne constituent en fait que les parties amont de bassins ou sous bassins (Moselle, Dendre, Senne, Dyle Gette, Oise, ...). La présence d'obstacles plus en aval, et donc dans les pays ou régions limitrophes, devrait être identifiée et permettrait une analyse plus globale et plus réaliste de cette problématique de la continuité longitudinale des cours d'eau pour les poissons.

2. Analyse des résultats d'indice à l'échelle des tronçons de vallée

Le graphique ci-dessous présente la distribution des résultats d'indices obtenus à l'échelle des tronçons de vallée selon les cinq classes de qualité de ces indices, pour les scores suivants :

- Scores du tronçon pour les éléments « Hydrologie » et « Morphologie »,
- Scores du tronçon pour les critères « Chenalisation », « Nature des berges » et « Continuité de la ripisylve ».

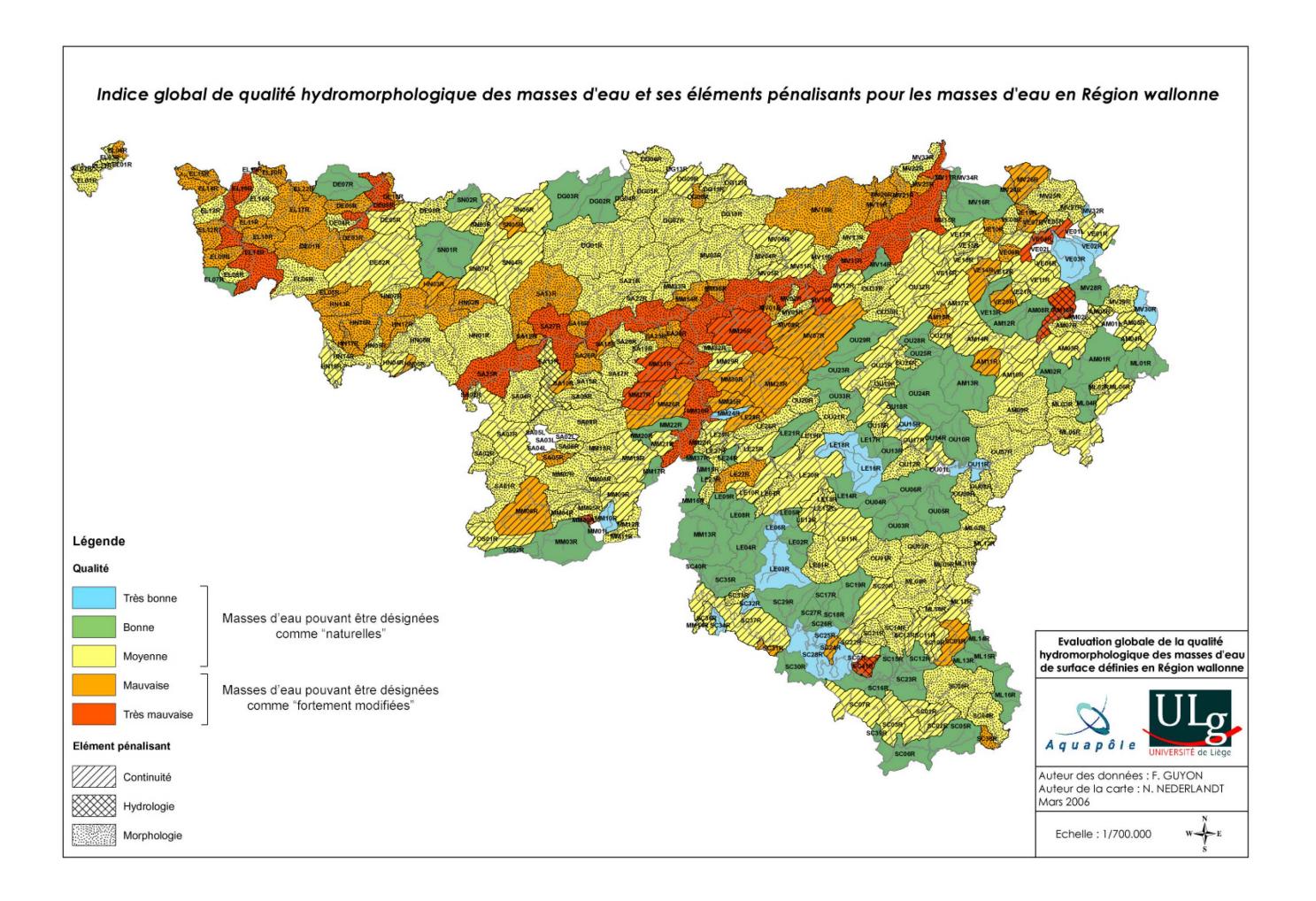


La cartographie de ces différents scores calculés à l'échelle des tronçons de vallée figure dans l'annexe cartographique de ce rapport.

Les scores du critère « Chenalisation » sont globalement répartis de manière égale dans les cinq classes de qualité. Les scores de l'élément « Morphologie » et du critère « Continuité de la ripisylve » suivent, quant à eux une distribution de type normale, centrée sur la classe 40-60% (qualité moyenne). Deux scores présentent une distribution fortement décentrée vers la droite (classe de qualité 80-100%) : il s'agit des scores de l'élément « Hydrologie » et du critère « Nature des berges ».

3. Analyse des résultats d'indice à l'échelle des masses d'eau de surface

La carte à la page suivante, présente les résultats des indices globaux calculés pour les masses d'eau wallonnes de type « Rivière » (soit 319 masses d'eau) selon la méthodologie définie dans le cadre de cette étude. Ces indices globaux sont exprimés selon les cinq classes de qualité définies précédemment. Le graphique ci-dessous présente la distribution des résultats de l'indice global et des indices partiels par élément. L'ensemble des résultats d'indices calculés est présenté en annexe de ce rapport sous forme de tableaux.


Ce graphique met en évidence que :

- 15 masses d'eau présentent un indice global de qualité inférieur à 20%
- 63 masses d'eau présentent un indice global de qualité compris entre 20 et 40%
- 152 masses d'eau présentent un indice global de qualité compris entre 40 et 60%
- 72 masses d'eau présentent un indice global de qualité compris entre 60 et 80%
- 17 masses d'eau présentent un indice global de qualité supérieur à 80%.

Sur la base du seuil de 40% de résultat de l'indice global, **78 masses d'eau wallonnes pourraient** être désignées provisoirement comme masses d'eau fortement modifiées.

Pour ces 78 MEFM, le tableau ci-dessous précise la part respective de l'élément le plus pénalisant qui a conduit à cette désignation :

Elément le plus pénalisant	Nombre de MEFM
Hydrologie	3
Morphologie	48
Continuité	27

4. Comparaison des résultats obtenus avec la désignation provisoire des masses d'eau fortement modifiés réalisée en Région Wallonne

Rappelons que cette désignation provisoire a été effectuée par l'Administration des Eaux de Surface sur base du travail de B. NUTTENS et d'une validation des résultats obtenus par les gestionnaires de terrain.

Le tableau ci-dessous présente de manière comparative les résultats de la désignation des types de masses d'eau (naturelle ou MEFM) réalisée par l'Administration et ceux obtenus dans le cadre de cette étude.

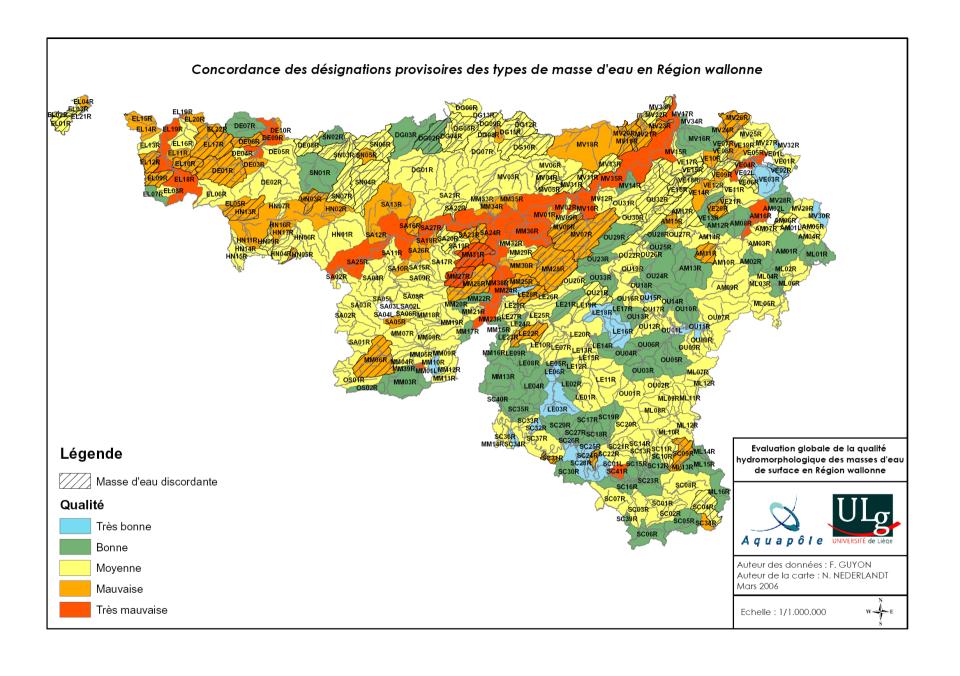
Type de masse d'eau	Nombre de masse d'eau Désignation Administration	Nombre de masse d'eau Désignation Etude		
MEFM	78	78		
Naturelle	241	241		

Ces deux approches amènent aux mêmes résultats. Néanmoins, ces résultats généraux cachent certaines différences et nous avons défini pour chaque masse d'eau la concordance ou la discordance de désignation du type de masse d'eau. Le tableau ci-dessous présente ces résultats :

Comparaison des désignations	Nombre de masses d'eau				
Concordance	255				
Discordance	64				

Ces résultats indiquent un **taux de concordance de 80%** (similaire à celui déterminé dans la précédente étude portant sur un échantillon de 102 masses d'eau). 64 masses d'eau wallonnes présentent donc une discordance de désignation qui se répartit de la manière suivante :

- 31 masses d'eau qui avaient été désignées par l'Administration comme « naturelle » seraient désignées comme MEFM
- 33 masses d'eau qui avaient été désignées par l'Administration comme MEFM seraient désignées comme « naturelle ».


Le tableau à la page suivante, présente la liste des masses d'eau présentant une discordance dans les désignations réalisées par la Direction des Eaux de Surface de la DGRNE et celles résultant des indices calculés (seuil de 40%).

A la lecture de ce tableau, ces discordances de désignation peuvent s'expliquer par :

- Des modalités de calcul différentes du critère « Obstacles » dans les deux approches,
- La prise en compte d'autres critères pour évaluer l'élément « Morphologie » : les critères « Chenalisation du lit mineur » et « Continuité de la ripisylve » n'étaient pas inclus dans l'approche de l'Administration
- Des modalités de calcul différentes impliquant l'entièreté des linéaires des masses d'eau.

Tableau : Masses d'eau présentant une discordance de désignation

CODE ME	DESIGNATION ADMI	DESIGNATION ETUDE 2006	QUALITE INDICE GLOBAL	HYDROLOGIE	MORPHOLOGIE	CONTINUITE
MV13R	hmwb	naturelle	Moyenne	100	41	Bonne
EL01R	hmwb	naturelle	Moyenne	100	45	Bonne
SA20R	hmwb	naturelle	Moyenne	100	56	Bonne
DG10R	hmwb	naturelle	Moyenne	100	46	Moyenne
SC04R	hmwb	naturelle	Moyenne	100	48	Moyenne
SA22R	hmwb	naturelle	Moyenne	100	48	Moyenne
HN09R	hmwb	naturelle	Moyenne	100	<u>50</u> 51	Moyenne
VE15R VE08R	hmwb hmwb	naturelle naturelle	Moyenne Moyenne	100 100	53	Moyenne Moyenne
MV04R	hmwb	naturelle	Moyenne	100	56	Moyenne
SN07R	hmwb	naturelle	Moyenne	77	61	Moyenne
SN04R	hmwb	naturelle	Movenne	63	61	Moyenne
SN06R	hmwb	naturelle	Moyenne	100	63	Moyenne
DG12R	hmwb	naturelle	Moyenne	100	64	Moyenne
MV31R	hmwb	naturelle	Moyenne	100	67	Moyenne
VE18R	hmwb	naturelle	Moyenne	74	67	Moyenne
DG09R	hmwb	naturelle	Moyenne	100	68	Moyenne
AM06R	hmwb	naturelle	Moyenne	42	68	Moyenne
OU32R	hmwb	naturelle	Moyenne	100	74	Moyenne
VE16R	hmwb	naturelle	Moyenne	100	88	Moyenne
AM17R	hmwb	naturelle	Moyenne	100	89	Moyenne
VE06R	hmwb	naturelle	Moyenne	100	94	Moyenne
MV23R	hmwb	naturelle	Moyenne	100	40	Très bonne
EL02R	hmwb	naturelle	Moyenne	100	43	Très bonne
DG05R	hmwb	naturelle	Moyenne	100	50	Très bonne
OU21R	hmwb	naturelle	Moyenne	100	50	Très bonne
MV22R	hmwb	naturelle	Moyenne	100	52	Très bonne
DE08R	hmwb	naturelle	Moyenne	100	52	Très bonne
MV11R EL21R	hmwb	naturelle	Moyenne	100 100	<u>52</u> 54	Très bonne
DG02R	hmwb hmwb	naturelle naturelle	Moyenne Bonne	100	64	Très bonne Très bonne
VE02R	hmwb	naturelle	Très bonne	100	89	Très bonne
LE22R	naturelle	hmwb	Mauvaise	100	34	Bonne
DE01R	naturelle	hmwb	Mauvaise	100	38	Bonne
HN05R	naturelle	hmwb	Mauvaise	100	41	Mauvaise
VE20R	naturelle	hmwb	Mauvaise	100	43	Mauvaise
LE28R	naturelle	hmwb	Mauvaise	100	45	Mauvaise
SC31R	naturelle	hmwb	Mauvaise	100	47	Mauvaise
MV07R	naturelle	hmwb	Mauvaise	100	52	Mauvaise
MV08R	naturelle	hmwb	Mauvaise	100	52	Mauvaise
MM25R	naturelle	hmwb	Mauvaise	100	53	Mauvaise
HN03R	naturelle	hmwb	Mauvaise	100	62	Mauvaise
AM11R	naturelle	hmwb	Mauvaise	100	64	Mauvaise
MM06R	naturelle	hmwb	Mauvaise	100	65	Mauvaise
SC09R MM28R	naturelle naturelle	hmwb hmwb	Mauvaise Mauvaise	100 100	68 69	Mauvaise Mauvaise
MM26R	naturelle	hmwb	Mauvaise	100	68 71	Mauvaise Mauvaise
SC24R	naturelle	hmwb	Mauvaise	100	72	Mauvaise
MV26R	naturelle	hmwb	Mauvaise	100	85	Mauvaise
MV20R	naturelle	hmwb	Mauvaise	100	26	Moyenne
HN13R	naturelle	hmwb	Mauvaise	100	36	Moyenne
SA23R	naturelle	hmwb	Mauvaise	100	38	Moyenne
MV19R	naturelle	hmwb	Mauvaise	100	29	Très bonne
SA24R	naturelle	hmwb	Mauvaise	100	30	Très bonne
SA16R	naturelle	hmwb	Mauvaise	100	30	Très bonne
MV21R	naturelle	hmwb	Mauvaise	100	31	Très bonne
EL22R	naturelle	hmwb	Mauvaise	100	33	Très bonne
EL12R	naturelle	hmwb	Mauvaise	100	35	Très bonne
EL09R	naturelle	hmwb	Mauvaise	100	36	Très bonne
DE06R	naturelle	hmwb	Mauvaise	100	36	Très bonne
EL17R	naturelle	hmwb	Mauvaise	100	38	Très bonne
EL10R MM31R	naturelle	hmwb	Mauvaise	100	39	Très mouveige
IVIIVI3TK	naturelle	hmwb	Très mauvaise	100	42	Très mauvaise

5. Comparaison des résultats obtenus avec la désignation du RNABE

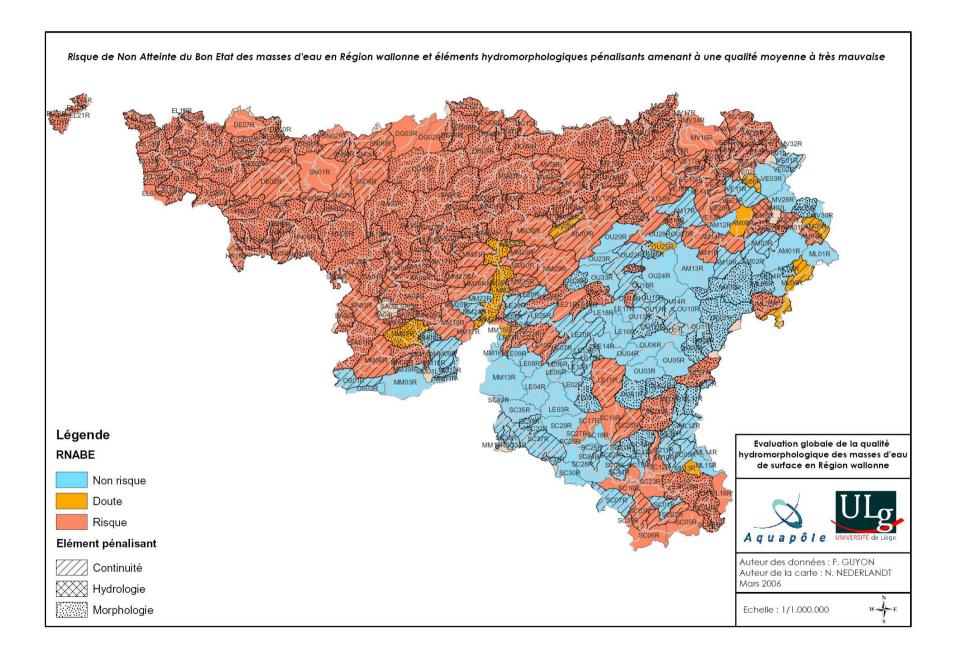
Nous avons également souhaité comparer nos résultats d'indices et de désignation des types de masses d'eau (naturelle ou MEFM) avec la désignation du Risque de Non Atteinte du Bon Etat réalisée par l'Administration des Eaux de Surface de la DGRNE, en charge de l'application de la DCE en Wallonie.

Le tableau ci-dessous présente cette comparaison :

	Désignation du RNABE						
Désignation du type de masse d'eau	Risque	Doute	Non Risque				
MEFM	70	2	6				
Naturelle	126	9	106				
Total	196	11	112				

A la lecture de ce tableau, 6 masses d'eau désignées provisoirement comme MEFM par notre étude sont définies comme atteignant le Bon Etat écologique en fonction des valeurs des indicateurs biologiques qui commandent cette désignation. Les résultats d'indices de ces 6 masses d'eau sont présentés dans le tableau ci-dessous afin de tenter d'expliquer cette discordance.

CODE_ME	DESIGNATION ADMI	DESIGNATION ETUDE 2006	QUALITE INDICE GLOBAL	HYDROLOGIE	MORPHOLOGIE	CONTINUITE	RNABE
MM39R	hmwb	hmwb	Très mauvaise	4	90	Bonne	Non Risque
SC41R	hmwb	hmwb	Très mauvaise	4	89	Bonne	Non Risque
SC24R	naturelle	hmwb	Mauvaise	100	72	Mauvaise	Non Risque
SC09R	naturelle	hmwb	Mauvaise	100	68	Mauvaise	Non Risque
SC31R	naturelle	hmwb	Mauvaise	100	47	Mauvaise	Non Risque
LE28R	naturelle	hmwb	Mauvaise	100	45	Mauvaise	Non Risque


Les résultats de ce tableau mettent en évidence que :

- 4 masses d'eau présentant un risque d'atteindre le bon état sont désignées comme MEFM sur base des résultats des indices de l'élément « Continuité »,
- 2 masses d'eau sur base des résultats d'indices de l'élément « Hydrologie » : l'aval du barrage du Ry de Rome et l'aval du barrage de la Vierre,

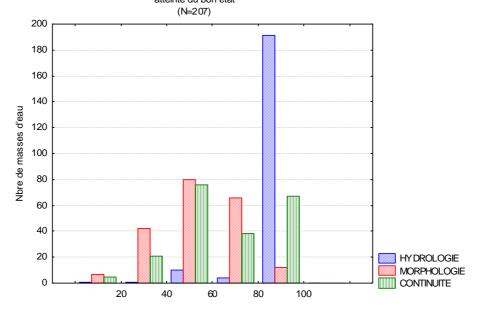
Ce constat est délicat à interpréter et nécessiterait une analyse plus approfondie des indices biologiques qui ont amené à cette désignation du non risque. Il serait notamment pertinent d'examiner les résultats de l'indice « poisson », le plus en lien avec les altérations concernées par les éléments « Hydrologie » et « Continuité ». En effet, les éclusées occasionnées par ces deux barrages, ainsi que les débits réservés estimés comme insuffisants, devraient occasionner des impacts importants sur les populations piscicoles.

Une continuité longitudinale perturbée (qualité mauvaise) se traduit généralement par un nombre d'obstacles au kilomètre de cours d'eau relativement important, pouvant fragmenter et isoler les populations piscicoles, et pouvant rendre impossible l'accès aux sites de reproduction (pour les salmonidés). Néanmoins, ces populations isolées peuvent dans certains cas, trouver dans ces portions de cours d'eau les conditions nécessaires à leurs besoins (le cas de la Rulles à l'amont des étangs barrages en est un bon exemple). Cette hypothèse pourrait expliquer ces discordances relatives dans les désignations mais devrait être vérifiée.

D'autre part, ces résultats soulèvent le problème de l'intégration des indices de qualité de l'élément « Continuité » dans la désignation provisoire des MEFM. Pour rappel, les textes de la DCE définissent ces MEFM comme des masses d'eau qui doivent présenter des altérations significatives sur l'hydrologie et la morphologie.

Le cas de la Meuse amont est également intéressant à mentionner. Cette masse d'eau est actuellement déclarée comme « à doute » d'atteindre le bon état et pourrait basculer dans la catégorie « non risque ». Il s'agit d'un très grand cours d'eau navigué et artificialisé, désigné dans notre étude comme MEFM. Les résultats des pêches électriques de cette masse d'eau montrent une assez grande diversité des espèces qui a amené à une bonne qualité biologique. Cette qualité biologique pourrait s'expliquer par les aménagements de reconnection des noues (qui sont en fait d'anciens méandres qui ont été coupés lors de la mise à gabarit de la Meuse pour la navigation). Ces annexes hydrauliques constituent des habitats de reproduction et de repos important pour les populations de cyprins qui colonisent la Meuse. Ces aménagements pourraient éventuellement compenser la perte des habitats naturels du lit mineur suite aux travaux de mise à gabarit (approfondissement du lit, y compris dans les bras secondaires). Cette deuxième hypothèse d'explication des discordances de désignation est à vérifier.

L'objectif principal de la DCE à atteindre pour les masses d'eau est celui du bon état écologique. L'hydromorphologie des cours d'eau participe directement à cet objectif : l'amélioration de la qualité physique des cours d'eau aura un effet bénéfique sur le qualité biologique des rivières. Dans ce cadre, il nous est apparu pertinent de confronter nos résultats d'indices de qualité hydromorphologique pour les masses d'eau déclarées « à risque » ou « à doute » de ne pas atteindre le bon état écologique. Ce risque résulte d'une appréciation des indicateurs biologiques et physico-chimiques. Pour certaines de ces masses d'eau, les mauvais résultats obtenus pour les indicateurs biologiques peuvent s'expliquer en partie par une mauvaise qualité hydromorphologique. Dans les futurs plans de gestion par sous bassins, toute une série d'actions de restauration de la qualité écologique devront être définies pour atteindre en 2015 ce bon état. Les résultats présentés ci-dessous peuvent aider à une compréhension globale des altérations à l'origine de ce risque, incluant l'hydromorphologie au même rang que la physico-chimie, et permettant ainsi aux responsables de l'application de la DCE de formuler les mesures de restauration de la qualité écologique adéquate pour atteindre ce bon état.


Le tableau ci-dessous présente les qualités hydromorphlogiques globales des masses d'eau déclarées à risque ou à doute de ne pas atteindre ce bon état :

Qualité hydromorphologique globale	Nombre de masses d'eau déclarées « à risque » ou « à doute » de ne pas atteindre le bon état
Très bonne	2
Bonne	27
Moyenne	106
Mauvaise	58
Très mauvaise	13

177 masses d'eau sur les 207 déclarées « à risque » ou « à doute » présentent une qualité hydromorphologique moyenne à très mauvaise, soit 85% de ces masses d'eau. Ce pourcentage important met clairement en évidence la part de l'hydromorphologie dans cette désignation du risque.

Afin d'aller plus loin dans cette analyse et de fournir à l'Administration en charge de l'application de la DCE des informations sur les types d'altérations physiques pouvant expliquer ce risque, nous avons mis en évidence les éléments de la qualité hydromorphologique les plus pénalisants pour ces masses d'eau, comme le montre le graphique à la page suivante :

Distribution des valeurs d'indices des éléments de la qualité hydromorphologique selon leurs classes de qualité pour les masses d'eau déclarées à risque ou à doute de non atteinte du bon état

127 masses d'eau déclarées « « à risque » ou « à doute » présentent un indice de qualité morphologique inférieur à 60% (qualité moyenne à très mauvaise). La continuité longitudinale des cours d'eau est l'autre facteur pénalisant de ces masses d'eau. Ces résultats pourraient orienter les futures mesures de gestion à entreprendre pour améliorer la qualité écologique de ces masses d'eau.

Cette démarche explicative des impacts hydromorphologiques affectant ces masses d'eau déclarées à risque de non atteinte du bon état pourrait être affiner en analysant plus précisément l'ensemble des données collectées dans cette étude ainsi que les différents scores calculés à des échelles plus précises (celle du tronçon de vallée) pour les différents critères de cette méthodologie.

CHAPITRE III:

VALIDATION DE CERTAINES DESIGNATIONS PROVISOIRES DE MASSES D'EAU COMME FORTEMENT MODIFIÉES (ÉTUDE 2004)

1. OBJECTIFS DE CETTE VALIDATION

Les résultats des indices obtenus en 2004 par la méthodologie simplifié élaborée pour 102 masses d'eau ont montré une concordance de désignation provisoire des types de masses d'eau (naturelles ou fortement modifiées) de plus de 80% avec la désignation effectuée par la Direction des Eaux de Surface. Néanmoins, il a été demandé que certaines validations ou analyses des résultats soient réalisées dans la présente étude afin de pouvoir expliquer ces différences.

Le tableau à la page suivante présente ces discordances de désignation, certaines explications et un programme de validation.

Ce programme de validation concerne 6 masses d'eau pour lesquelles une discordance se marque en lien avec les résultats obtenus pour l'élément « Morphologie ». L'application de l'outil QUALPHY a été retenue pour effectuer cette validation. Les résultats de cet outil seront exprimés pour les deux compartiments « Berges » et « Lit mineur » en lien direct avec les critères de l'élément « Morphologie » (le compartiment « Lit majeur » n'est pas repris dans les objectifs fixés par la DCE). Un indice « Berges / Lit mineur » pondéré par les poids respectifs de ces 2 compartiments selon les types physiques rencontrés sera calculé afin de permettre la comparaison avec les résultats obtenus par la méthode simplifiée.

Signalons que l'application de Qualphy envisagée pour la masse d'eau MV20R (Exhaure d'Ans) n'a pas pu être réalisé. En effet, ce cours d'eau était en assec complet lors de la visite de terrain. Par contre, nous avons appliqué le protocole Qualphy sur la partie aval de la Dendre Occidentale (DE03R), couvrant ainsi l'ensemble des tronçons de cette masse d'eau.

Discordances de désignation des types de masses d'eau réalisées par l'administration de la Région wallone et par les résultats de cette étude et proposition d'un programme de validation

CODE_ME	TYPE MASSE (RW)	TYPE MASSE (ETUDE)	INDICE GLOBAL	HYDROLOGIE	MORPHOLOGIE	CONTINUITE	ORIGINE DISCORDANCE	VALIDATION
MV20R	naturelle	hmwb	26,5	100,0	26,5	100,0	MORPHOLOGIE	QUALPHY BERGES & LIT MINEUR
VE12R	naturelle	hmwb	27,7	100,0	82,0	27,7	OBSTACLES	
MM26R	naturelle	hmwb	28,2	100,0	69,9	28,2	OBSTACLES	
MM27R	naturelle	hmwb	29,0	100,0	52,1	29,0	OBSTACLES	
SA17R	naturelle	hmwb	30,0	100,0	52,8	30,0	OBSTACLES	
MV06R	naturelle	hmwb	34,1	100,0	87,8	34,1	OBSTACLES	
DE01R	naturelle	hmwb	35,4	100,0	35,4	82,9	MORPHOLOGIE	QUALPHY BERGES & LIT MINEUR
MV25R	naturelle	hmwb	38,4	100,0	57,5	38,4	OBSTACLES	
DE04R	naturelle	hmwb	38,6	100,0	38,6	100,0	MORPHOLOGIE	QUALPHY BERGES & LIT MINEUR
SC08R	naturelle	hmwb	38,9	100,0	38,9	89,2	MORPHOLOGIE	DONNEES QUALPHY SEMOIS
SN05R	hmwb	naturelle	40,0	100,0	58,4	40,0	OBSTACLES	
MV13R	hmwb	naturelle	42,7	100,0	45,3	42,7	OBSTACLES	
DE03R	hmwb	naturelle	49,8	63,6	49,8	100,0	ERREUR VANDER MAELEN	
SN04R	hmwb	naturelle	50,1	50,1	60,1	59,0	HYDROLOGIE	
MV22R	hmwb	naturelle	51,9	100,0	51,9	100,0	MORPHOLOGIE	QUALPHY BERGES & LIT MINEUR
OU32R	hmwb	naturelle	54,2	100,0	73,1	54,2	MORPHOLOGIE	DONNEES QUALPHY OURTHE
SN07R	hmwb	naturelle	59,8	76,9	59,8	60,8	MORPHOLOGIE	QUALPHY BERGES & LIT MINEUR
SN06R	hmwb	naturelle	62,5	100,0	62,5	77,6	MORPHOLOGIE	QUALPHY BERGES & LIT MINEUR

2. RÉSULTATS OBTENUS PAR L'OUTIL QUALPHY

Les résultats d'indices calculés par l'outil Qualphy pour les 6 masses d'eau qui ont fait l'objet du protocole Qualphy sont présentés en annexe de ce rapport.

Le tableau ci-dessous présente l'extrapolation à l'échelle des masses d'eau des résultats obtenus par l'outil Qualphy, et en parallèle les résultats d'indices obtenus par la méthode cartographique simplifiée (étude 2004).

Tableau : comparaison	des résultats QUALPHY	avec ceux obtenus p	par la méthode simplifièe

		Indices QUALPHY				Indices QUALPHY Indices méthode simplifiée				
CODE_ME	DESIGNATION ADMINISTRATION	INDGLO	INDBERG	IND_LITMIN	INDBERGLIT PONDERE*	INDGLO	могрно	CHENAL	BERGES	RIPISYLVE
DE01R	naturelle	45,8	54,8	36,9	38,7	35,4	35,4	25,9	87,9	26,9
DE03R	hmwb	40,8	49,2	32,8	37,7	36,9	36,9	33,1	50	41,7
DE04R	naturelle	48,1	61,1	39,6	42,5	38,6	38,6	25,8	97	40,4
SN06R	hmwb	53,9	58,4	47,2	51,7	62,5	62,5	67,6	78,7	31
SN07R	hmwb	52,1	57,3	40,8	48,3	59,8	59,8	61,5	81,3	37,7
MV22R	hmwb	52,7	48,2	48,7	48,5	51,9	51,9	48,1	77,9	28,2

^{*} Indice global calculé sur les indices partiels "Berges" et "Lit mineur" pondérés selon les poids attribués à chaque segment selon le type physique

Les résultats des indices Qualphy, et notamment celui regroupant les compartiments « Berges » et « Lit mineur » pondérés selon les types physiques rencontrés, permettent de valider les résultats obtenus par la méthode simplifiée pour 5 masses sur les 6 envisagées. Seule la masse d'eau DE04R serait à désigner comme « naturelle » (désignation conforme à celle réalisée par l'administration) alors qu'elle avait été provisoirement définie comme fortement modifiée sur base du seuil d'indice global fixé à 40%.

Le tableau ci-dessous présente les résultats obtenus pour ces masses d'eau par la présente étude. Rappelons que certains critères ont fait l'objet de modification dans leur estimation, notamment les critères « Chenalisation » et « Nature des berges ». Aussi, il nous est apparu pertinent d'examiner l'efficacité de ces changements méthodologiques en les confrontant avec les résultats obtenus par l'outil Qualphy et ceux provenant de la méthodologie développée dans la précédente étude.

	Indices calculés (étude 2006)									
Code Me	Indice global	Morphologie Chenalisation		Berges	Ripisylve					
DE01R	38,3	38,3	25,4	75,9	26,9					
DE03R	35,6	35,6	34,2	35,5	41,7					
DE04R	47,8	47,8	32,8	38,3	40,4					
SN06R	Moyenne	62,5	68,6	65,5	31					
SN07R	Moyenne	60,8	62,4	70,1	37,7					
MV22R	51,8	51,8	48,7	67,5	28,2					

Ces résultats sont parfaitement concordants avec ceux provenant de la validation effectuée avec l'outil Qualphy. Les modifications des deux critères de l'élément « Morphologie » semblent mieux correspondre à la réalité de terrain.

CHAPITRE IV:

SYNTHÈSE, CRITIQUES ET PERSPECTIVES D'AMÉLIORATION DE LA MÉTHODOLOGIE D'EVALUATION GLOBALE DE LA QUALITÉ HYDROMORPHOLOGIQUE DES MASSES D'EAU WALLONNES DE SURFACE

1. SYNTHÈSE

Cette étude originale a de nouveau mis en évidence qu'il était possible de construire une méthodologie pragmatique d'évaluation de la qualité hydromorphologique des masses d'eau se basant en grande partie sur des données cartographiques existantes ou facilement accessibles en Région wallonne.

Cette méthodologie s'est inspirée des principes d'évaluation développés dans les outils français QUALPHY et SEQ Physique, en les adaptant aux exigences de la DCE. Elle a montré une certaine fiabilité des résultats obtenus par rapport à ceux résultant de l'outil QUALPHY.

Elle a permis de valider globalement les désignations provisoires des types de masses d'eau de surface (naturelles ou fortement modifiées) réalisées par la Direction des Eaux de Surface de la DGRNE, en charge de l'application de la DCE en Wallonie (80% de concordance dans les désignations). Les discordances dans les désignations proviennent essentiellement de la nature et des modalités d'estimation des critères pris en compte, qui sont plus complets dans l'approche développée dans cette étude, et dans la prise en compte de l'entièreté des linéaires de masse d'eau.

2. Critiques et perspectives d'amélioration de la méthodologie

2.1. Vers une méthodologie hiérarchique et multiscalaire

La méthode développée dans cette étude est une **méthode d'évaluation globale** impliquant de travailler à des échelles d'analyse assez large (échelle de la masse d'eau et du tronçon de vallée faisant plusieurs kilomètres). Elle permet une vue d'ensemble des niveaux de pressions hydromorphologiques s'exerçant sur les masses d'eau.

Cette méthodologie globale devrait constituer la première étape d'une méthodologie plus vaste et plus complète impliquant d'autres méthodes plus précises, travaillant à des échelles plus fines. Cette perspective s'inscrit dans une **démarche méthodologique hiérarchique et multiscalaire de type** « **up-down** » ou descendante. Cette approche hiérarchique à différents niveaux facilite la compréhension que certains processus à large échelle (géomorphologie des vallées, par exemple) structurent l'habitat à l'échelle locale et permettent ainsi l'établissement de modèles prédictifs sur

l'état, la fréquence, le devenir d'habitats à l'échelle locale compte tenu d'une connaissance à plus large échelle (THOMPSON et *al.*, 2001).

Cette nécessité de compléments méthodologiques à des échelles plus fines pourrait notamment se justifier dans le programme de **mise en place des réseaux de mesures** de la qualité écologique des masses d'eau imposés aux états membres par la DCE, réseaux dans lesquels l'hydromorphologie doit être abordée. Le développement de ces méthodes plus précises devra établir un lien analytique avec les résultats obtenus par la méthode globale.

2.2. Valoriser les données collectées et les résultats obtenus dans la phase d'établissement des plans de gestion par sous bassins

Comme nous l'avons dit précédemment, cette méthode a pour objectif premier l'évaluation globale de la qualité hydromorphologique des masses d'eau. Néanmoins, l'ensemble des données collectées et les résultats obtenus : identification spatiale et quantification des différentes altérations majeures s'exerçant sur les cours d'eau, indices de qualité à différentes échelles, ..., peut constituer une aide précieuse à l'élaboration des plans de gestion.

Ceci nécessite le préalable nécessaire d'établir un lien de cause à effet entre la qualité et les pressions hydromorphologiques d'une part et la qualité biologique des cours d'eau d'autre part. Ce lien pourrait être établi par une étude scientifique recherchant ou construisant des modèles reliant des variables hydromorphologiques traduisant un degré de pression ou d'altération et des variables biologiques. Des travaux allant dans ce sens sont en cours au CEMAGREF de Lyon (projet REBECCA). Une future convention d'étude confiée par l'Administration des Eaux de Surface de la DGRNE à notre département et au Laboratoire de Démographie des Poissons et d'Hydro-Ecologie de l'Unité de Biologie du Comportement (ULg) va complètement dans cette direction. L'objectif de cette première étude sera de réaliser une synthèse bibliographique sur cette problématique. Ce lien pourrait également être établi de manière empirique en définissant un seuil de qualité hydromorphologique à atteindre, comme le fait l'Agence de l'Eau Rhin Meuse en France avec l'outil QUALPHY. Cette Agence envisage de fixer un seuil d'indice de 70%, en prenant comme hypothèse que ce niveau de qualité serait bénéfique pour la biologie des écosystèmes aquatiques. Cette hypothèse mériterait néanmoins d'être vérifiée.

Ce lien établi, une **planification d'objectifs de gestion** à entreprendre pour restaurer la qualité hydromorphologique et donc écologique des masses d'eau pourrait être envisagée à partir de l'ensemble des données collectées dans cette étude. Signalons à ce sujet, que des méthodes de type « Analyse multi-critères » commencent à être utilisées pour la planification de la gestion des bassins versants, comme par exemple, l'outil EMDS (Ecological Management Decision Support System) développé aux USA par l'USDA Forest Service. Ces analyses impliquant différentes alternatives peuvent intégrer des contraintes de coûts de réalisation des actions. Elles semblent prometteuses pour aborder efficacement cette gestion.

2.3. Poursuivre l'établissement de conditions de référence des critères de la méthodologie

Dans le cadre de cette étude, nous avons établi les conditions de référence du critère « Chenalisation du lit mineur » en déterminant des valeurs de référence du coefficient de sinuosité pour des combinaisons de variables hydrographiques.

Cette démarche devrait être continué pour d'autres critères de notre méthodologie, et surtout pour les deux variables de l'élément « Hydrologie ». Une étude ayant pour objectif une **régionalisation des débits caractéristiques des cours d'eau et de leur variabilité naturelle** irait dans ce sens. Dans la

littérature scientifique internationale, de plus en plus de travaux et étude sur le thème « Environmental flow analysis » sont à mentionner, provenant surtout des pays anglo-saxons (Australie, Nouvelle Zélande, ..). Une recherche et une synthèse bibliographique de ces études seraient à réaliser afin d'établir un canevas d'étude.

Les résultats de cette étude pourraient nous permettre d'affiner le système de pondération des deux critères hydrologiques de notre méthodologie et de modifier notre estimation de ces deux critères en introduisant le principe de l'écart à ces valeurs de référence.

2.4. Analyser la pertinence du découpage de certaines masses d'eau

Suite à nos travaux, il nous semble que certaines masses d'eau présentent une hétérogénéité spatiale des altérations hydromorphologiques, englobant ainsi des secteurs peu perturbés et des secteurs fortement altérés au sein d'une même masse d'eau, ou englobant des altérations de nature très différentes. Les indices globaux de notre méthode intègrent la totalité du linéaire des cours d'eau d'une masse d'eau, ce qui revient à tempérer l'influence de secteurs fortement perturbés dans le score global. Quatre cas de masses d'eau hétérogènes en termes de pressions hydromorphologiques peuvent être mentionnés :

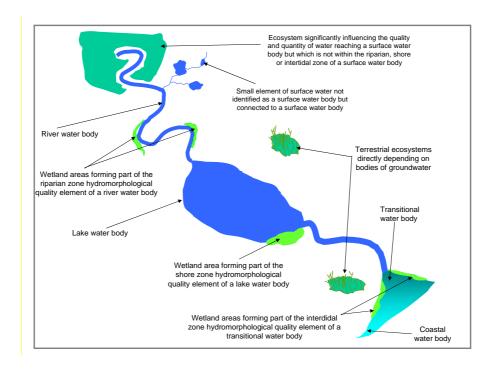
- 1. La masse d'eau **SN07R** comprenant la Sennette et ces affluents amont, ainsi que la partie aval de la Senne wallonne. La Sennette présente de grandes différences amont / aval en termes de pressions hydromorphologiques. Sa partie amont, globalement jusqu'à sa confluence avec le Ry de Ternel (SN05R), présente une qualité physique moyenne (urbanisation faible, agriculture dominante, assez peu de rectification des cours d'eau). Le secteur à l'aval de cette confluence est marqué par une urbanisation beaucoup plus importante et des problèmes de transfert des eaux vers l'axe ouest du canal reliant Charleroi à Bruxelles. Le lit du cours d'eau est très enfoncé et rectifié et les débits sont fortement influencés par ces transferts vers le canal. De plus, la partie aval de la Senne présente une qualité globale moyenne. Trois secteurs distincts constituent donc cette masse d'eau, et il serait pertinent de les distinguer en masses d'eau individuelles.
- 2. La masse d'eau **SN04R** comprend la Samme et ses affluents amont ainsi que la Thines. Cette masse d'eau possède une surface très importante. La Samme est fortement perturbée par des transferts d'eaux vers le canal Bruxelles-Charleroi. Néanmoins, le linéaire important de la Thines qui n'est pas altéré par ces transferts d'eaux tempère l'indice « Hydrologie ». Le découpage de cette masse en deux masses d'eau distinctes : l'une reprenant la Samme et ses affluents amont, et l'autre reprenant la Thines, permettrait de mieux faire ressortir cette altération hydrologique de la Samme.
- 3. La masse d'eau **DE03R** comprend la partie aval de la Dendre occidentale et la partie aval de la Dendre orientale. La partie occidentale est fortement perturbée par l'urbanisation de Ath alors que la partie orientale est altérée par une prise d'eau de surface importante. Les scores des éléments « Hydrologie » et « Morphologie » calculés sur la totalité du linéaire de cette masse d'eau ne traduisent pas correctement ces deux pressions. Cette masse d'eau est petite en termes de surface. Aussi, il serait bon de réfléchir à un découpage différent et/ou à une fusion de certains linéaires avec les masses d'eau voisines (intégration du linéaire aval de la Dendre occidentale avec la masse d'eau DE01R).
- 4. La masse d'eau **SC41R** comprend le linéaire aval du barrage de la Vierre. Cette masse d'eau est à cheval sur deux régions naturelles : l'Ardenne en amont et la Lorraine belge en aval. Cette distinction régionale se marque également sur les types physiques de cours d'eau. De plus, l'influence hydrologique du barrage sur cette masse d'eau est essentiellement dans la partie ardennaise, d'autant plus qu'il existe dans cette partie deux post-barrages (seuils) qui circonscrivent les lâchers dans cette zone (effet de marnage important). Une réflexion sur le découpage de cette masse d'eau serait à entreprendre.

2.5. Elargir l'analyse de la continuité longitudinale des cours d'eau à l'échelle des bassins hydrographiques

L'évolution de notre méthodologie d'analyse des impacts liés aux obstacles présents sur les cours d'eau a intégré la position la plus en aval d'un obstacle infranchissable pour calculer le pourcentage de linéaire inaccessible pour le poisson.

Néanmoins, de nombreux cours d'eau wallons ne constituent en fait que les parties amont de bassins ou de sous bassins (Moselle, Dendre, Senne, Dyle Gette, Oise, Semois Chiers, ...). La présence d'obstacles plus en aval, et donc dans les pays ou régions limitrophes, devrait être identifiée et permettrait une analyse plus globale et plus réaliste de cette problématique de la continuité longitudinale des cours d'eau pour les poissons. L'échelle du bassin hydrographique constitue l'échelle d'analyse la plus adéquate pour appréhender cette problématique.

A ce sujet, nous tenons à signaler l'existence d'une étude en cours entre notre département et l'Agence de l'Eau Rhin Meuse en France. Celle-ci porte sur la mise en commun et l'analyse des données issues de l'application QUALPHY pour les cours d'eau des parties wallonne et française du bassin de la Meuse (à l'exception des cours d'eau du bassin de la Sambre gérés par l'Agence de l'Eau Artois Picardie). Cette mise en commun des données va intégrer les données d'inventaires des obstacles réalisés dans les deux pays (celui en cours de la DCENN e celui réalisé par le CSP). Des contacts devraient être pris avec l'Agence de l'Eau Artois Picardie pour compléter ces inventaires.


Une approche similaire devrait être initiée pour les cours d'eau du **bassin de l'Escaut**. Ceux-ci font l'objet d'un projet INTERREG (SCALDIT) regroupant les gestionnaires des différents pays concernés par ce bassin, et il serait peut-être pertinent d'initier dans ce cadre, un projet de mise en commun des données d'inventaire des obstacles et d'analyse de la problématique de la continuité longitudinale des masses d'eau à l'échelle de ce bassin.

2.6. Intégrer d'autres éléments de l'écosystème aquatique

Comme nous l'avions déjà signalé dans le rapport précédent, il nous paraît pertinent d'ajouter un quatrième élément de la qualité hydromorphologique des masses d'eau traitant de la qualité des annexes des cours d'eau.

Cet élément « Annexes » fait allusion :

1. aux annexes hydrauliques directement liées à l'hydrologie du cours d'eau, aux zones humides du lit majeur qui participent à la qualité écologique des milieux aquatiques et aux petits cours d'eau de l'amont (tributaires) qui participent grandement à la qualité des parties aval (fourniture de matériaux, zones de reproduction, ...). Cet élément figure dans l'approche « Réseau d'Expertise des Habitats » développé par le CSP en France. Cet élément « Annexes » n'est pas directement imposé dans la DCE bien que l'intégration des zones humides en lien direct ou indirect avec les masses d'eau de surface ou souterraines soit clairement évoquée dans le document guide « Horizontal Guidance Document of the role of wetlands in the water Framework Directive, (2003) », tel que le montre la figure à la page suivante, tirée de ce même document.

2. aux interactions d'un cours d'eau avec son lit majeur, processus naturel lié à l'expansion des eaux lors des crues ou à la mobilité naturelle de certains types de cours d'eau (dynamique latérale). Ce processus fait référence à la nécessaire « continuité latérale » des cours d'eau et à l'intégrité de leur « espace de liberté ». Ce dernier terme a été repris de documents rédigés par les Agences de l'eau en France qui définissent cet espace comme « l'espace du lit majeur à l'intérieur duquel le ou les chenaux fluviaux assurent des translations latérales pour permettre une mobilisation des sédiments ainsi que le fonctionnement optimum des écosystèmes aquatiques et terrestres » (Hydratec et al., 1999). Cette définition implique la prise en compte du fonctionnement naturel de cours d'eau à lit plus ou moins mobile, mais peut inclure également les concepts de zones tampons à vocation hydrologique ou écologique.

La réduction de cet espace de liberté entraîne des impacts importants : réduction du champ d'expansion des crues, perte de connectivité de la rivière et de sa faune avec les annexes hydrauliques, ... Cette réduction de l'espace de liberté des cours d'eau peut être occasionnée par des aménagements d'origine anthropique tels que les digues ou les remblais situés à proximité de la rivière. Ces aménagements sont notamment liés à la présence d'axes de communication (voiries, voies ferrées, canaux, ...) ou à la protection de zones d'urbanisation du lit majeur. Cet espace de liberté est variable selon les types de cours d'eau (et notamment en fonction de la morphologie des vallées et de la sinuosité du lit mineur). Il est généralement plus restreint que le lit majeur historique du cours d'eau. Différentes études, notamment commanditées par les Agences de l'eau françaises, ont défini les modalités de délimitation de cet espace.

CHAPITRE V:

AUTRES CONTRIBUTIONS DE CETTE ETUDE

1. Participation à des séminaires

➤ Workshop « WFD and Hydromorphology » organisé à Prague les 17 – 19 octobre 2005.

Une présentation synthétique de la méthode d'évaluation globale de la qualité hydromorphologique des masses d'eau wallonnes a été réalisée et insérée dans les comptes-rendus de ce workshop. L'ensemble des présentations peut être consulté sur le site Internet ci-dessous.

http://www.ecologic-events.de/hydromorphology/presentations.htm

Workshop « Hydromorphologie » à Alost, organisé par la VMM dans le cadre de l'atelier PA4 du projet SCALDIT.

Une présentation détaillée de la méthode d'évaluation a été présentée dans ce cadre.

2. Participation au groupe de travail « Désignation définitive des masses d'eau wallonnes fortement modifiées »

Suite à une demande de la Direction des Eaux de Surface, il nous a été demandé de participer à ce groupe de travail. Ce processus de désignation définitive des MEFM est présenté à la page suivante. Cette contribution a fait l'objet d'un avenant de 2 mois à l'actuelle convention.

Il concerne les masses d'eau désignées provisoirement comme MEFM (soit 32 masses d'eau), suite à la précédente étude. Notre contribution a porté sur l'établissement de tableaux de synthèse des résultats obtenus dans le cadre de la précédente étude. Ces résultats sont exprimés par groupes de masses d'eau définis selon l'usage anthropique majoritaire de celles-ci. Différentes caractéristiques des altérations sont présents dans ces tableaux pour chaque masses d'eau : résultats des indices spécifiques par critère, % de linéaire de berges sans ripisylve, nombre d'obstacles infranchissables ou majeurs, ... Ces tableaux figurent en annexe de ce rapport. Ces informations seront utiles pour cibler les usages mis en jeu et pour ajuster les mesures de restauration de la qualité hydromorphologique demandées dans cette procédure de désignation définitive.

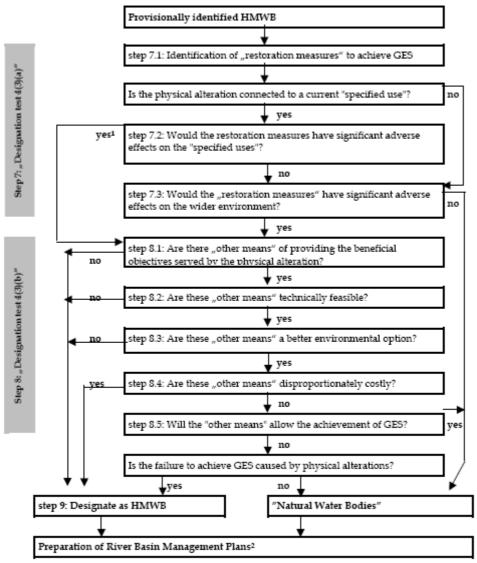


Figure 6: Steps leading to the designation of HMWB (steps 7-9)

- Note 1: Step 7.2: If the restoration measures would have significant adverse effects on the "specified uses" you could directly proceed to the "Designation test 4(3)(b)", step 8.1. But for a better justification for designation you may also want to apply step 7.3.
- Note 2: Preparation of River Basin Management Plans including: identifying objectives, identifying programmes of measures (POM), cost effectiveness analysis, derogation for an extended timetable and less stringent objective, consideration of Article 4(8), to ensure no deterioration of other water bodies.

BIBLIOGRAPHIE

ANDRIAMAHEFA, H. (1999). Les hydro-écorégions du bassin de la Loire. Morphologie, hydrologie, pressions anthropiques sur les cours d'eau et les bassins versants. Thèse de doctorat, Université Jean Monnet, Saint Etienne, 253p + ann.

AGENCE DE L'EAU RHIN-MEUSE (1998), Typologie des cours d'eau du bassin Rhin-Meuse, Compléments et consolidation, Agence de l'Eau Rhin-Meuse, 62p.

AGENCES DE L'EAU (1999). La gestion des rivières – Transport solide et atterrissements – Guide méthodologique. Etude n°65. 97p.

COHEN, P. (1998). Régionalisation de l'habitat physique du poisson. Approche multi-scalaire et application au bassin de la Loire, France. Thèse de doctorat, Univ. Lyon I.

CUPP, (1989). Stream corridor classification for forested lands of Washington, Washington Forest Protection Association, Olympia, Washington, USA, 24p + ann.

GUYON F. et al. (2003) (a). Application d'un outil d'évaluation de la qualité physique des cours d'eau en Région Wallonne : Modèle Qualphy; Validation de la méthode dans le bassin de la Semois, Rapport Final ; FUL-DGRNE, 136p+ann.

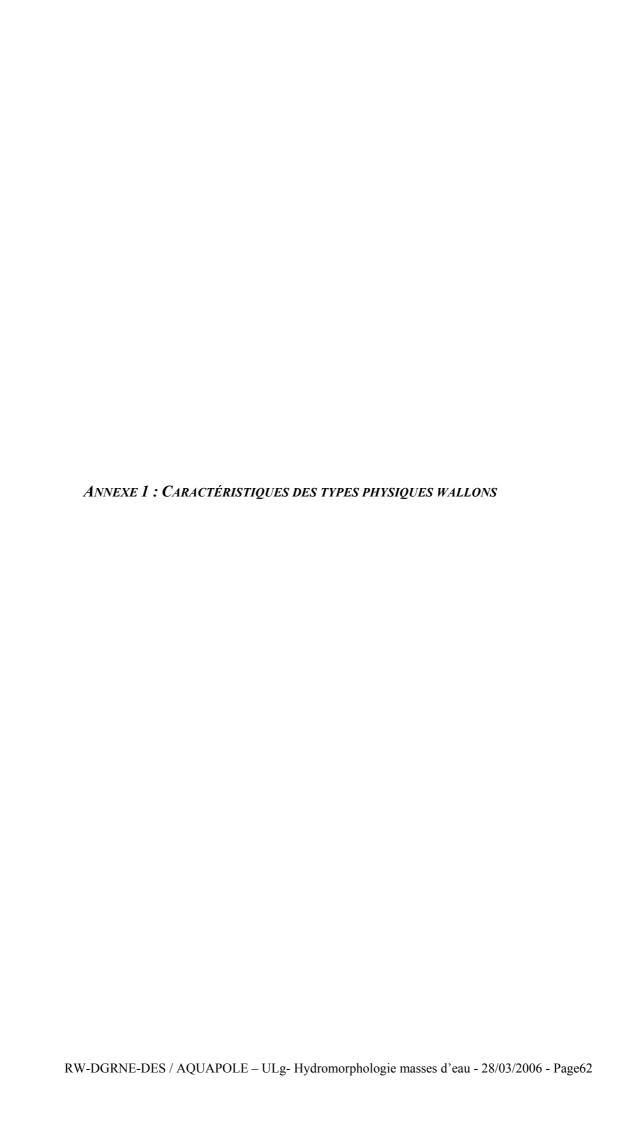
GUYON F. et al. (2003) (b). Evaluation de la qualité physique de la Meuse et de la Semois navigable, Application de l'outil Qualphy, Rapport Final; FUL-DGRNE.

Horizontal Guidance Document of the role of wetlands in the water Framework Directive, (2003). Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Wetlands Horizontal Guidance, 66p.

HYDRATEC et al. (1999). Définition des fuseaux de mobilité fonctionnels sur les cours d'eau du bassin Rhin Meuse. Agence de l'Eau Rhin Meuse, 75p. + annexes.

MEDD, (2002). Bilan des tests nationaux réalisés avec la version expérimentale de l'outil SEQ Physique – Phase 2 : Propositions pour la version V1. Géodes Géologues Conseil et SIEE Sud Ouest, Ministère de l'Env. et du Développement Durable, 103p.

MOUCHET F. et al. (2004), Etude de la typologie et de la dynamique des forêts ripicoles wallonnes : conséquences pour la gestion hydrologique et biologique des cours d'eau, Rapport final, FUSAGX, DGRNE, 45p+ann.

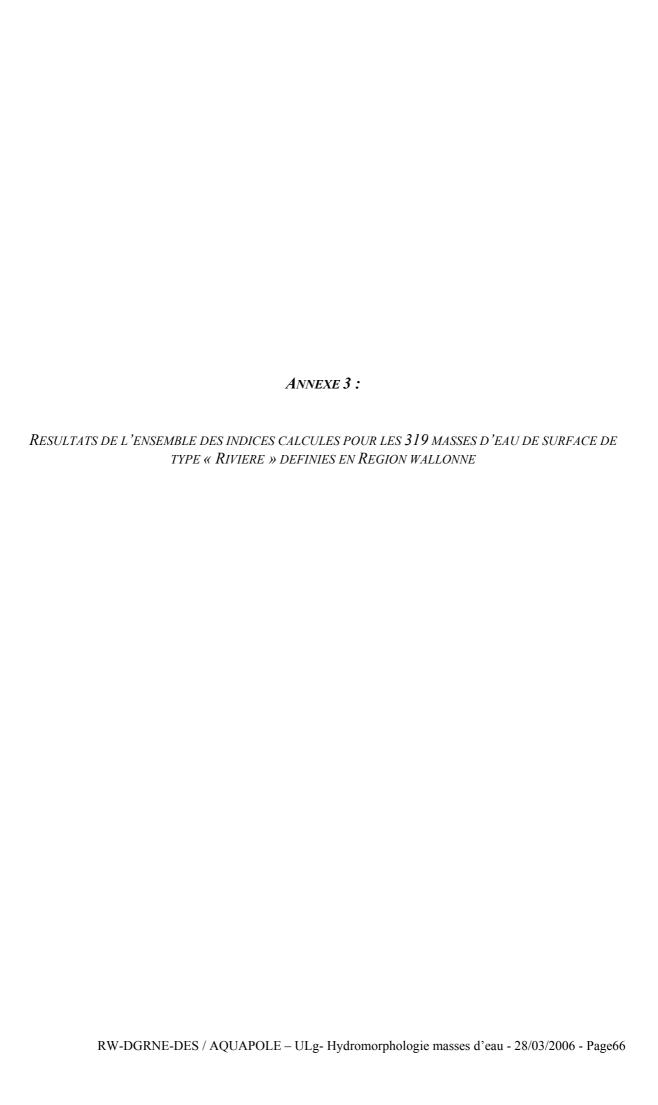

MOY J., GUYON F. & COGELS X., (2004). Caractérisation du milieu physique des cours d'eau. Rapport final - Programme PIRENE, ULg – Campus d'Arlon.114p. +annexe cartographique.

SEELBACH et al., (1997). A Landscape-Based Ecological Classification System for river valley segments in lower Michigan. Michigan Department of Natural Resources – Fisheries Division, 18p + ann.

SOUCHON et al. (2000), Régionalisation de l'habitat aquatique dans le bassin de la Loire, Cemagref de Lyon, 261 p. + ann.

THOMPSON et al., (2001). A geomorphological framework for river characterization and habitat assessment. Aquatic Conservation: Marine and Freshwater Ecosystems, Volume 11, Issue 5, 2001. Pages 373-389

WASSON et al., (1998). Impacts écologiques de la chenalisation des rivières. Cemagref Editions, 158p.


Tableau de synthèse des types

		1	2	3	3 bis	4	5	5 bis	5 ter	6
types		cours d'eau à énergie forte des vallée en V	cours d'eau à énergie moyenne à forte des vallées en U	cours d'eau à énergie moyenne à faible des vallées de côtes schisteuses	cours d'eau à énergie moyenne à faible des vallées de côtes calcaires	Cours d'eau à énergie moyenne à faibles des vallées calcaires et/ou schsiteuses et crayeuses	cours d'eau à énergie moyenne à faible des collines et plateaux argilo- marno-limono- sableuses	cours d'eau à énergie moyenne à forte des plateaux ardennais tourbeux sur schistes et phyllades	cours d'eau à énergie moyenne à forte des collines et plateaux sur schistes, phyllades et calcaires	cours d'eau à énergie faible à nulle des plaines d'accumulation argilo-limono- sableuse
énergie		très forte	forte à moyenne	moyenne à faible	moyenne à faible	faible	moyenne à faible	moyenne à forte	moyenne à faible	faible à nulle
energie	pentes de vallée	>15‰	15‰> P> 5 ‰	<5%	<5‰	< 5 ‰	< 5 %	15‰> P> 5 ‰	5 % <p<10%< th=""><th>très souvent <1‰</th></p<10%<>	très souvent <1‰
	ordre	1 à 2	1 à 2	variable	variable	variable	1 à 4	1	1 à 3	1 à 6
lik malmanın	largeur lit mineur	< 5 m	< 5 m	variable selon l'ordre	variable selon l'ordre	variable selon l'ordre	variable selon l'ordre	< 5 m	< 5 m	variable selon l'ordre
lit mineur	sinuosité	rectiligne	rectiligne à peu sinueux	sinuosité de vallée	sinuosité de vallée	sinueux (limitation latérales des méandres, méandres confinés)	sinueux	rectiligne à peu sinueux	sinueux à peu sinueux	sinueux et méandreux
	nature	schistes et phyllades	schistes et phyllades	schistes ou schistes et phyllades	calcaires et calco-shistes	Calcaires et/ou schistes et craies	argiles et/ou sables et/ou grés et marnes	Schistes, phyllades	Schistes, phyllades ou calcaires	argiles et/ou sables
	résistance	hétérogènes à tendres	hétérogènes à tendres	hétérogènes à tendres	sédimentaires cohérentes	sédimentaires cohérentes tendres à hétérogènes	meubles à tendres	meubles	hétérogènes à tendres	Meubles à tendres
lithologie	couverture	absente	absente	limon peu caillouteux et graviers de terrasse et/ou alluvions dans les vallées inférieures des rangs supérieurs	graviers de terrasse et/ou alluvions uniquement dans les vallées inférieures des rangs supérieurs	alluvions et limons	limons et alluvions	tourbes	Absentes ou limon peu caillouteux	dépôts alluviaux importants
	perméabilité	semi perméable	semi perméable	semi perméable	perméable à fissures à alternance de roches semi perméable	Perméable à semi perméable	variable selon la teneur des parties	imperméable	variable selon la teneur des parties	perméabilité faible du fait des dépôts argilo- limoneux
	profil	V	V à U étroit	U encaissé ou en gorge	U encaissé à U large	larges vallées bordées de côtes	vallons très ouverts (zones d'incisions collinéennes) à larges plaines	V très évasé sur les hauts plateaux	V très évasé sur les hauts plateaux	vastes plaines d'inondation
forme de la vallée	pente des versants	forte	forte à moyenne	forte	forte à moyenne	moyenne	moyenne à très faible	faible sur les hauts plateaux	faible sur les hauts plateaux	très faible à nulle
	fond de vallée	absent	absent à étroit	absent ou présent mais peu étendu	peu étendu	présent mais limité les talus	large et fréquemment inondé	absent	présent localement	vaste (~ 1 Km)
correspondances provisoires types français	qualphy	T1 cours d'eau et torrents de montagne	T2-T2 bis cours d'eau de moyenne montagne	T4bis cours d'eau sur schistes ardennais	T4 cours d'eau de côtes calcaires	T5 basses vallées de plateaux calcaires	T6 bis cours d'eau de collines argilo-limoneuses	T6 bis cours d'eau de collines argilo-limoneuses	T6 bis cours d'eau de collines argilo-limoneuses	T6 cours d'eau de plaines argilo-limoneuses
	typologie nationale	122 Torrents de moyenne montagne	212 rivières de moyenne montagne et hauts plateaux	231 cours d'eau de plateaux calcaires	231 cours d'eau de plateaux calcaires	233-234 cours d'eau de vallées calcaires et plateaux crayeux	221 rivières sur formations meubles et/ou rivières de plateaux argilo-marneux	212 rivières de hauts plateaux	215 rivières de hauts plateaux	320-330 rivières de plaines crayeuses ou rivières de plaineS argilo- limoneuses

ANNEXE 2:

PONDÉRATIONS DU SEQ PHYSIQUE VERSION VO' POUR LES COMPARTIMENTS « LIT MINEUR » ET « BERGES » RERGES &

DENGE	, u											
LIT MINE	EUR	Ber	ges	Lit m	nineur	Types						
		Structure	Ripisylve	Continuité	Morphologie	1 11 11 1	Commentaires					
	Tresses	80	20	40	60	alluv. variables						
	Hesses	80	20	30	70	alluv. fins	Berges : la fixation des berges est d'autant plus perturbante que les					
Dynamique	Sinueux	60	40	50	50	alluv. grossiers	formes du lit sont naturellement variées (de rectiligne aux tresses). Lit Mineur : le poids de la morphologie est d'autant plus grand que les					
forte	Loc. sinueux			Sans obje	t		formes sont naturellement variées; ceci est pondéré par le type naturel des alluvions, les plus grossiers étant très sensibles aux					
	Rectiligne	50	50	70	30	alluv. grossiers	ruptures de continuité.					
	riectingrie	30	30	sans	objet	alluv. fins						
	Tresses			Sans obje	t		Berges : la fixation des berges est d'autant plus perturbante que les					
Dynamique	Sinueux	70	30	40	60	alluv. grossiers	formes du lit sont naturellement variées (de rectiligne à sinueux). Lit					
Dynamique	Sindeux	70	30	30	70	alluv. fins	Mineur : le poids de la morphologie est d'autant plus grand que les					
	Loc. sinueux	60	40	50	50	alluv. grossiers	formes sont naturellement variées; ceci est pondéré par le type					
	Loc. Sindeux	ux 60	40	30	70	alluv. fins	naturel des alluvions, les plus grossiers étant très sensibles aux ruptures de continuité.					
	Rectiliano	50	50	70	30	alluv. grossiers	ruptures de continuite.					
	Rectiligne	30	50	50	50	alluv. fins						

AMOR 19 100 17 BOWNE 100 100 100 12 2 2 34 AMORE AMORE 100 100 100 100 100 100 100 100 100 10	CODE ME	QUALITE INDICE GLOBAL	SCORE HYDROLOGIE	SCORE MORPHOLOGIE	QUALITE CONTINUITE	CYCLE HYDRO	ETIAGE	CHENAL	NATURE BERGES	RIPISYLVE
AMORA MOYENNE 100 73 MOYENNE 100 100 67 88 93 122 144 155 145 145 145 145 145 145 145 145	AM01R	71	100	71	BONNE	100	100	72	92	34
AMORE MOYENNE 100 P7 MOYENNE 100 100 P8 93 121 AMORE 42 42 42 65 MOYENNE 100 100 90 94 11 AMORE 42 42 65 MOYENNE 100 100 97 74 97 182 AMORE 42 42 65 MOYENNE 100 100 100 177 97 187 AMORE 43 100 12 100 12 100 100 100 100 100 100 1	AM02R	BONNE	100	87	BONNE			100	92	
AMORR MOYENNE 100 77									<u> </u>	
AMORR 42										
AMORR BONNE 100 90 80 NE 100 100 100 44 99 90 00 AMORR STANDAMORR										
AMORR SONNE 100 99. BONNE 100 100 100 09 99 00 AMORP SONNE 100 100 100 44 189 25 AMITOR MOYENNE 100 75 MOYENNE 100 100 83 09 63 AMITOR MOYENNE 100 100 75 MOYENNE 100 100 00 85 29 AMITOR MOYENNE 100 100 100 00 86 22 07 AMITOR MOYENNE 100 100 100 00 86 73 AMITOR MOYENNE 100 100 100 100 00 86 73 AMITOR MOYENNE 100 100 100 100 00 86 73 AMITOR MOYENNE 100 100 100 100 00 80 MOYENNE 100 100 100 00 44 72 DECEMBER SONNE 100 100 100 00 44 72 DECEMBER SONNE 100 100 100 00 84 72 DECEMBER SONNE 100 100 00 86 MOYENNE 100 100 00 87 78 49 DECEMBER SONNE 100 100 00 86 MOYENNE 100 100 00 86 MOYENNE 100 100 00 87 88 40 00 86 MOYENNE 100 100 00 98 84 22 DECEMBER SONNE 100 100 00 86 MOYENNE 100 100 00 98 84 22 DECEMBER SONNE 100 100 00 98 84 22 DECEMBER SONNE 100 100 100 00 86 MOYENNE 100 100 00 100 00 86 MOYENNE 100 100 100 00 86 MOYENNE 100 100 100 00 100 00 86 MOYENNE 100 100 00 86 MOYENNE 100 100 100 00 86 M										
AMOR S3 100 53 MOYENNE 100 100 44 89 25 14 14 14 14 14 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16										
AM11R MOYENNE 100 75 MOYENNE 100 100 83 89 53 29										
AMITIZE		MOYENNE						83		
AM118R	AM11R	MAUVAISE	100	64	MAUVAISE	100	100	60	85	29
AM14R MOYENE 100 92 MOYENE 100 100 99 86 73 37 AM16R 80 100 100 100 100 115 59 37 AM16R 80 100 100 30 BONNE 100 100 100 115 59 37 AM16R 80 100 89 MOYENE 0 100 100 100 100 47 72 DEDIT 8 38 100 38 BONNE 100 100 100 100 47 72 DEDIT 8 38 100 38 BONNE 100 100 100 32 75 75 55 55 55 55 55 55 55 55 55 55 55										
AM16R 30 100 90 BONNE 100 100 13 50 97 37 AM17R 59 100 100 89 MOYENNE 100 100 100 64 75 55 55 AM17R 59 100 89 MOYENNE 100 100 100 64 77 62 27 DEEDR 38 100 38 BONNE 100 100 100 55 76 27 DEEDR 59 100 61 MOYENNE 100 100 57 78 49 49 DEEDR 59 100 61 MOYENNE 100 100 57 78 49 49 DEEDR 59 100 61 MOYENNE 100 100 57 78 49 49 DEEDR 59 100 61 MOYENNE 100 100 57 78 49 49 DEEDR 59 100 61 MOYENNE 100 100 58 86 42 DEEDR 59 100 61 MOYENNE 100 100 83 80 61 42 DEEDR 59 100 61 MOYENNE 100 100 83 80 61 42 DEEDR 59 100 61 MOYENNE 100 100 83 80 61 42 DEEDR 59 100 61 MOYENNE 100 100 83 80 61 42 DEEDR 59 100 65 MOYENNE 100 100 83 80 61 42 DEEDR 59 MOYENNE 100 100 83 80 61 42 DEEDR 59 MOYENNE 100 100 83 80 61 42 DEEDR 59 MOYENNE 100 100 83 80 61 42 DEEDR 59 MOYENNE 100 100 83 80 61 42 DEEDR 59 MOYENNE 100 100 83 80 MOYENNE 100 100 85 87 MOYENNE 100 100 85 87 MOYENNE 100 100 85 MOYENNE 100 100 85 MOYENNE 100 100 80 MOYENNE 100 100 85 MOYENNE 100 100 85 MOYENNE 100 100 85 MOYENNE 100 100 80 MOYENNE 100 100 80 MOYENNE 100 100 83 MOYEN										
AM17R 19 100 89 MOYENNE 100 100 100 64 72 DE91R 38 100 38 BOWNE 100 100 100 64 72 DE91R 38 100 38 BOWNE 100 100 25 76 27 DE91R 38 100 100 61 MOYENNE 100 100 57 78 49 DE90R 59 100 61 MOYENNE 100 100 70 77 8 49 DE90R 36 64 36 TRES BOWNE 100 100 33 88 40 DE95R MOYENNE 100 60 MOYENNE 100 100 59 84 27 DE95R 36 100 61 MOYENNE 100 100 59 84 27 DE95R 36 100 86 RES BOWNE 100 100 103 38 89 40 DE95R 36 100 86 RES BOWNE 100 100 100 133 88 40 DE95R 52 100 82 TRES BOWNE 100 100 100 100 100 100 100 100 100 10										
AM17R 59 100 89 MOYENNE 100 100 100 64 72 27 DEDET 38 100 38 BONNE 100 100 100 25 76 27 DEDET 59 100 61 MOYENNE 100 100 57 78 49 100 DEDAT 30 64 36 TRES BONNE 100 100 57 78 49 100 DEDAT 30 64 36 TRES BONNE 100 100 57 78 49 100 DEDAT 30 64 65 34 36 42 27 DEDAT 30 64 65 34 36 42 27 DEDAT 30 64 56 34 36 42 27 DEDAT 30 50 50 50 50 50 50 50 50 50 50 50 50 50										
DEDIT SS										
DEDUR 59										
DEDUR 36										
DEDGOR MOYENNE 100										
DEDOR 36	DE04R		100	48	TRES BONNE					
DEOPR 61										
DEOBR 52										
DECORR 13										
DETUR 38										
DG01R 56										
DG02R										
DG03R										
DOGGER DOGGER SO										81
DOGGER 46 100 45 TRES BONNE 100 100 31 69 47	DG04R	54	100	54	TRES BONNE	100	100			
DG07R										
DG0BR										
DG99R										
DG110R										
DG11R										
DG12R										
EL02R										
EL03R	EL01R	45	100	45		100	100			5
EL04R 29 100 29 TRES BONNE 100 100 10 86 11 EL05R 35 100 35 BONNE 100 100 20 70 39 EL06R 52 100 52 MOYENNE 100 100 40 85 45 EL07R 61 100 461 TRES BONNE 100 100 54 95 34 EL08R 45 100 45 TRES BONNE 100 100 30 85 36 EL09R 36 100 36 TRES BONNE 100 100 16 81 43 EL10R 39 100 39 TRES BONNE 100 100 16 81 43 EL10R 39 100 39 TRES BONNE 100 100 26 76 26 EL11R 33 100 33 TRES BONNE 100 100 14 83 21 EL12R 35 100 55 TRES BONNE 100 100 53 89 27 EL14R 29 100 29 MOYENNE 100 100 53 89 27 EL14R 29 100 29 MOYENNE 100 100 53 89 27 EL15R 48 100 48 BONNE 100 100 10 40 90 5 EL15R 48 100 48 BONNE 100 100 22 84 23 EL17R 38 100 36 TRES BONNE 100 100 22 84 23 EL17R 38 100 36 TRES BONNE 100 100 22 84 23 EL17R 38 100 36 TRES BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 16 100 100 22 84 23 EL18R 6 51 6 BONNE 16 100 3 3 13 7 EL18R 6 51 6 BONNE 16 100 3 3 13 7 EL19R 8 51 8 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 55 74 27 EL22R 33 100 33 TRES BONNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 50 51 43 HN03R MAUVAISE 100 41 MAUVAISE 100 100 43 79 40 HN03R MAUVAISE 100 41 MAUVAISE 100 100 55 78 27 HN09R 50 100 57 MAUVAISE 100 100 43 79 40 HN03R MAUVAISE 100 41 MAUVAISE 100 100 55 52 66 HN11R 26 100 56 MOYENNE 100 100 55 52 66 HN11R 26 100 57 MOYENNE 100 100 55 52 66 HN11R 26 100 56 MOYENNE 100 100 42 84 15 69 HN04R MOYENNE 100 57 MOYENNE 100 100 55 52 66 HN11R 26 100 57 MOYENNE 100 100 64 81 59 94 95 16 HN11R 26 100 57 MOYENNE 100 100 64 81 59 94 16 ELE0IR 53 100 53 BONNE 100 100 77 94 60	EL02R	43	100	43	TRES BONNE	100	100	33	92	5
ELOSR 35 100 35 BONNE 100 100 20 70 39 ELOGR 52 100 52 MOYENNE 100 100 40 85 45 45 ELOTR 61 100 61 TRES BONNE 100 100 54 95 34 45 ELORR 45 100 45 TRES BONNE 100 100 30 85 36 ELORR 36 100 36 TRES BONNE 100 100 26 76 28 ELORR 39 100 39 TRES BONNE 100 100 26 76 28 ELITR 33 100 33 TRES BONNE 100 100 10 14 83 21 ELITR 33 100 33 TRES BONNE 100 100 10 19 86 16 ELITR 33 100 35 TRES BONNE 100 100 10 19 86 16 ELITR 29 100 29 MOYENNE 100 100 10 10 10 10 10 10 10 10 10 10 1										
ELOGR 52 100 52 MOYENNE 100 100 40 85 45 ELOTR 61 100 61 TRES BONNE 100 100 54 95 34 ELORR 45 100 45 TRES BONNE 100 100 30 85 36 ELORR 36 100 36 TRES BONNE 100 100 26 76 26 ELORR 39 100 39 TRES BONNE 100 100 26 76 26 ELITR 33 100 33 TRES BONNE 100 100 44 83 21 ELIGR 35 100 35 TRES BONNE 100 100 44 83 21 ELIGR 35 100 35 TRES BONNE 100 100 53 89 27 ELIGR 29 100 29 MOYENNE 100 100 53 89 27 ELIGR 48 100 28 TRES BONNE 100 100 40 40 40 40 40 40 40 40 40 40 40 40 4										
ELOTR 61 100 61 TRES BONNE 100 100 54 95 34 ELOBR 45 100 45 TRES BONNE 100 100 30 85 36 ELOBR 36 100 36 TRES BONNE 100 100 16 81 43 43 EL10R 39 100 39 TRES BONNE 100 100 16 81 43 21 EL11R 33 100 33 TRES BONNE 100 100 14 83 21 EL11R 35 100 35 TRES BONNE 100 100 16 86 16 EL11R 37 EL11R 38 100 38 TRES BONNE 100 100 100 19 86 16 EL11R 29 100 29 MOYENNE 100 100 100 39 27 EL11R 29 100 29 MOYENNE 100 100 100 10 90 5 EL15R 28 100 28 TRES BONNE 100 100 100 10 90 5 EL15R 28 100 38 TRES BONNE 100 100 100 22 84 EL11R 38 100 38 TRES BONNE 100 100 22 84 EL11R 29 100 28 TRES BONNE 100 100 22 84 EL11R 29 EL11R 28 100 38 TRES BONNE 100 100 22 84 EL11R 29 EL11R 28 EL11R 29 TRES BONNE 100 100 100 22 84 EL11R 29 EL11R 28 EL11R 29 TRES BONNE 100 100 100 37 91 22 EL11R 29 EL11R 2										
EL08R										
EL10R 36 100 36 TRES BONNE 100 100 26 76 26 EL11R 33 100 39 TRES BONNE 100 100 26 76 26 EL11R 33 100 33 TRES BONNE 100 100 14 83 21 EL12R 35 100 35 TRES BONNE 100 100 19 86 16 EL13R 58 100 58 TRES BONNE 100 100 53 89 27 EL14R 29 100 29 MOYENNE 100 100 10 90 5 EL15R 28 100 28 TRES BONNE 100 100 10 90 5 EL15R 28 100 28 TRES BONNE 100 100 14 74 8 EL15R 48 100 48 BONNE 100 100 37 91 22 EL17R 38 100 38 TRES BONNE 100 100 37 91 22 EL17R 38 100 38 TRES BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 18 100 3 13 7 EL19R 8 51 8 51 8 TRES BONNE 18 100 3 13 7 EL19R 8 51 8 TRES BONNE 100 100 20 94 6 EL20R 36 100 36 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 100 49 49 25 HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN03R MAUVAISE 100 41 MAUVAISE 100 100 43 79 40 HN03R MAUVAISE 100 41 MAUVAISE 100 100 43 79 40 HN03R MAUVAISE 100 45 MOYENNE 100 100 43 79 40 HN03R MAUVAISE 100 45 MOYENNE 100 100 43 79 40 HN03R MAUVAISE 100 45 MOYENNE 100 100 43 79 40 HN03R MAUVAISE 100 45 MOYENNE 100 100 42 81 MOYENNE 100 100 42 81 MOYENNE 100 100 42 81 MOYENNE 100 100 44 MOYENNE 100 100 42 81 MOYENNE 100 100 42 81 MOYENNE 100 100 44 MOYENNE 100 100										
EL10R 39 100 39 TRES BONNE 100 100 26 76 26 EL11R 33 100 33 TRES BONNE 100 100 14 83 21 EL12R 35 100 55 TRES BONNE 100 100 19 86 16 EL13R 58 100 58 TRES BONNE 100 100 53 89 27 EL14R 29 100 29 MOYENNE 100 100 10 90 5 EL15R 28 100 28 TRES BONNE 100 100 14 74 88 EL16R 48 100 48 BONNE 100 100 14 74 88 EL11R 6 5 51 6 BONNE 100 100 37 91 22 EL17R 38 100 33 TRES BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 100 3 13 7 EL19R 6 51 6 BONNE 18 100 3 13 7 EL19R 6 51 6 TRES BONNE 18 100 3 13 7 EL19R 6 51 6 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL22R 33 100 54 TRES BONNE 100 100 50 51 43 HN01R 49 100 49 MOYENNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 10 91 28 HN01R 49 100 49 MOYENNE 100 100 10 10 91 28 HN01R 49 100 62 MAUVAISE 100 100 10 85 63 HN08R MAUVAISE 100 41 MAUVAISE 100 100 100 85 63 HN06R 54 100 54 MAUVAISE 100 100 100 85 63 HN06R 54 100 55 MOYENNE 100 100 100 85 63 HN06R 54 100 56 TRES BONNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 43 79 40 HN07R 50 100 50 MOYENNE 100 100 44 661 50 HN11R 26 100 56 TRES BONNE 100 100 44 661 50 HN11R 26 100 26 TRES BONNE 100 100 42 81 66 HN11R 36 100 36 MOYENNE 100 100 42 81 66 HN11R 36 100 36 MOYENNE 100 100 42 81 66 HN11R 36 100 36 MOYENNE 100 100 42 81 66 HN11R 36 100 36 MOYENNE 100 100 42 81 66 HN11R 36 100 36 MOYENNE 100 100 42 81 66 HN11R 36 100 36 MOYENNE 100 100 42 81 66 HN11R 36 100 36 MOYENNE 100 100 42 81 66 HN11R 36 100 36 MOYENNE 100 100 42 81 66 HN11R 37 100 45 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 44 61 50 HN11R 36 100 36 MOYENNE 100 100 100 44 61 50 HN11R										
EL12R										26
EL13R 58 100 58 TRES BONNE 100 100 53 89 27 EL14R 29 100 29 MOYENNE 100 100 10 90 5 EL15R 28 100 48 BONNE 100 100 14 74 8 EL16R 48 100 48 BONNE 100 100 37 91 22 EL17R 38 100 38 TRES BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 18 100 3 13 7 EL19R 8 51 8 TRES BONNE 18 100 3 13 13 7 EL19R 8 51 8 TRES BONNE 18 100 3 13 13 16 EL20R 36 100 36 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL32R 34 100 54 TRES BONNE 100 100 55 74 27 EL32R 54 100 54 TRES BONNE 100 100 50 51 43 HN01R 49 100 49 MOYENNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 50 51 43 HN02R MOYENNE 100 62 MAUVAISE 100 100 61 76 35 HN04R MOYENNE 100 71 MOYENNE 100 100 43 79 40 HN05R MAUVAISE 100 41 MAUVAISE 100 100 43 79 40 HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 43 79 40 HN07R 45 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 56 TRES BONNE 100 100 42 85 63 HN09R 50 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 42 81 66 HN11R 26 100 36 MOYENNE 100 100 42 81 66 HN11R 57 100 57 MOYENNE 100 100 42 81 66 HN11R 57 100 57 MOYENNE 100 100 42 81 66 HN11R 59 38 MOYENNE 100 100 44 97 HN16R 38 59 38 MOYENNE 100 100 44 90 26 LE01R 53 100 74 BONNE 100 100 71 91 56 LE02R 74 100 74 BONNE 100 100 77 94 60			100							
EL14R 29 100 29 MOYENNE 100 100 10 90 5 EL15R 28 100 28 TRES BONNE 100 100 37 91 22 EL17R 38 100 38 TRES BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 18 100 3 13 16 EL20R 36 100 36 TRES BONNE 100 10 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 20 94 6 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL19R 49 100 49 MOYENNE 100 100 50 51 43 HN01R 49 100 29 MAUVAISE 100 100 10 91 28 HN01R MOYENNE 100 29 MAUVAISE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 61 76 35 HN04R MOYENNE 100 41 MAUVAISE 100 100 83 32 HN05R MAUVAISE 100 41 MAUVAISE 100 100 10 85 63 HN06R 54 100 54 MAUVAISE 100 100 10 85 63 HN06R 54 100 54 MAUVAISE 100 100 100 61 76 35 HN06R 54 100 54 MAUVAISE 100 100 100 35 78 27 HN07R 45 100 45 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 44 61 50 HN01R 26 100 26 TRES BONNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 42 81 66 HN11R 26 100 26 TRES BONNE 100 100 42 81 66 HN11R 36 100 36 MOYENNE 100 100 42 81 66 HN11R 57 100 57 MOYENNE 100 100 42 81 66 HN11R 57 100 57 MOYENNE 100 100 42 81 66 HN11R 57 100 57 MOYENNE 100 100 42 81 66 HN11R 57 100 57 MOYENNE 100 100 42 81 66 HN11R 57 100 57 MOYENNE 100 100 44 81 59 HN16R 38 59 38 MOYENNE 100 100 44 90 26 LE01R 53 100 53 BONNE 100 100 77 94 60										
EL15R 28 100 28 TRES BONNE 100 100 14 74 8 EL16R 48 100 48 BONNE 100 100 37 91 22 EL17R 38 100 38 TRES BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 18 100 3 13 7 EL19R 8 51 8 TRES BONNE 18 100 3 13 16 EL20R 36 100 54 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 50 51 43 HN01R 49 100 49 MOYENNE 100 100 50 51										
EL16R 48 100 48 BONNE 100 100 37 91 22 EL17R 38 100 38 TRES BONNE 110 100 22 84 23 EL18R 6 51 6 BONNE 18 100 3 13 7 EL19R 8 51 8 TRES BONNE 18 100 3 13 16 EL20R 36 100 36 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 53 74 27 EL12R 33 100 33 TRES BONNE 100 100 50 51 43 HN01R 49 100 49 MOYENNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 50 51 43 HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN04R MOYENNE 100 71 MOYENNE 100 100 74 83 32 HN05R MAUVAISE 100 41 MAUVAISE 100 100 74 83 32 HN05R MAUVAISE 100 54 MOYENNE 100 100 43 79 40 HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 50 MOYENNE 100 100 44 46 61 50 HN01R 26 100 26 TRES BONNE 100 100 44 661 50 HN11R 26 100 26 TRES BONNE 100 100 44 661 50 HN11R 26 100 36 MOYENNE 100 100 44 661 50 HN11R 26 100 36 MOYENNE 100 100 44 661 50 HN11R 26 100 36 MOYENNE 100 100 42 84 17 HN11R 26 100 36 MOYENNE 100 100 42 84 17 HN11R 36 100 36 MOYENNE 100 100 42 84 17 HN11R 37 100 57 MOYENNE 100 100 42 81 66 HN11R 38 59 38 MOYENNE 100 100 64 81 59 HN16R 38 59 38 MOYENNE 100 100 44 99 16 LE01R 53 100 74 BONNE 100 100 77 94 60										
EL17R 38 100 38 TRES BONNE 100 100 22 84 23 EL18R 6 51 6 BONNE 18 100 3 13 77 EL19R 8 51 8 TRES BONNE 100 100 20 94 6 EL20R 36 100 36 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 53 74 27 EL22R 33 100 49 MOYENNE 100 100 50 51 43 HN01R 49 100 49 MOYENNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 100 50 51 43 HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN04R MOYENNE 100 71 MOYENNE 100 100 61 76 35 HN05R MAUVAISE 100 41 MAUVAISE 100 100 85 63 HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 35 78 27 HN09R 50 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 42 84 17 HN11R 26 100 36 MOYENNE 100 100 42 84 17 HN11R 26 100 57 MOYENNE 100 100 42 84 17 HN11R 26 100 57 MOYENNE 100 100 42 84 17 HN11R 26 100 57 MOYENNE 100 100 42 84 17 HN11R 26 100 57 MOYENNE 100 100 42 84 17 HN11R 26 100 57 MOYENNE 100 100 42 84 17 HN11R 26 100 57 MOYENNE 100 100 42 84 17 HN11R 36 100 36 MOYENNE 100 100 42 84 17 HN11R 57 100 57 MOYENNE 100 100 42 84 16 HN11R 57 100 57 MOYENNE 100 100 42 84 16 HN11R 38 59 38 MOYENNE 100 100 44 88 159 HN16R 38 59 38 MOYENNE 100 100 44 99 16 HN17R 21 100 21 TRES BONNE 100 100 44 99 26 LE02R 74 100 74 BONNE 100 100 77 94 60										
EL18R 6 51 6 BONNE 18 100 3 13 7 EL19R 8 51 8 TRES BONNE 18 100 3 13 16 EL20R 36 100 36 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 91 28 HN01R 49 100 49 MCYENNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 19 49 25 HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN05R MAUVAISE 100 71 MOYENNE 100 100 10 85										
EL19R 8 51 8 TRES BONNE 18 100 3 13 16 EL20R 36 100 36 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 10 91 28 HN01R 49 100 49 MOYENNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 19 49 25 HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN05R MAUVAISE 100 41 MAUVAISE 100 100 74 83 32 HN06R 54 100 41 MUVAISE 100 100 43										
EL20R 36 100 36 TRES BONNE 100 100 20 94 6 EL21R 54 100 54 TRES BONNE 100 100 53 74 27 EL22R 33 100 33 TRES BONNE 100 100 10 91 28 HN01R 49 100 49 MOYENNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 19 49 25 HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN04R MOYENNE 100 71 MOYENNE 100 100 74 83 32 HN05R MAUVAISE 100 41 MAUVAISE 100 100 74 83 32 HN05R MAUVAISE 100 41 MAUVAISE 100 100 <					TRES BONNE				13	16
EL22R 33 100 33 TRES BONNE 100 100 91 28 HN01R 49 100 49 MOYENNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 19 49 25 HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN04R MOYENNE 100 71 MOYENNE 100 100 74 83 32 HN05R MAUVAISE 100 41 MAUVAISE 100 100 85 63 HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 35 78 27 HN09R 50 100 50 MOYENNE 100 100 44 61 50		36		36						6
HN01R 49 100 49 MOYENNE 100 100 50 51 43 HN02R 29 100 29 MAUVAISE 100 100 19 49 25 HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN04R MOYENNE 100 71 MOYENNE 100 100 74 83 32 HN05R MAUVAISE 100 41 MAUVAISE 100 100 85 63 HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 35 78 27 HN09R 50 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 44 61										
HN02R 29 100 29 MAUVAISE 100 100 19 49 25 HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN04R MOYENNE 100 71 MOYENNE 100 100 74 83 32 HN05R MAUVAISE 100 41 MAUVAISE 100 100 85 63 HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 35 78 27 HN09R 50 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 42 81 17 HN13R 36 100 36 MOYENNE 100 100 42 81										
HN03R MAUVAISE 100 62 MAUVAISE 100 100 61 76 35 HN04R MOYENNE 100 71 MOYENNE 100 100 74 83 32 HN05R MAUVAISE 100 41 MAUVAISE 100 100 10 85 63 HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 35 78 27 HN09R 50 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 44 61 50 HN13R 36 100 36 MOYENNE 100 100 20 84 17 HN14R 57 100 57 MOYENNE 100 100 42										
HN04R MOYENNE 100 71 MOYENNE 100 100 74 83 32 HN05R MAUVAISE 100 41 MAUVAISE 100 100 10 85 63 HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 35 78 27 HN09R 50 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 44 61 50 HN13R 36 100 36 MOYENNE 100 100 40 55 26 HN14R 57 100 57 MOYENNE 100 100 42 81 66 HN15R MOYENNE 100 100 100 44 81 59										
HN05R MAUVAISE 100 41 MAUVAISE 100 100 85 63 HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 35 78 27 HN09R 50 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 44 61 50 HN13R 36 100 36 MOYENNE 100 100 20 84 17 HN14R 57 100 57 MOYENNE 100 100 42 81 66 HN15R MOYENNE 100 100 42 81 66 HN16R 38 59 38 MOYENNE 100 100 64 81 59 HN17R 21										
HN06R 54 100 54 MOYENNE 100 100 43 79 40 HN07R 45 100 45 MOYENNE 100 100 35 78 27 HN09R 50 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 55 26 HN13R 36 100 36 MOYENNE 100 100 20 84 17 HN14R 57 100 57 MOYENNE 100 100 42 81 66 HN15R MOYENNE 100 100 64 81 59 HN16R 38 59 38 MOYENNE 49 75 47 25 21 HN17R 21 100 21 TRES BONNE 100 100 49 16 LE01R 53 100										
HN07R 45 100 45 MOYENNE 100 100 35 78 27 HN09R 50 100 50 MOYENNE 100 100 44 61 50 HN11R 26 100 26 TRES BONNE 100 100 10 55 26 HN13R 36 100 36 MOYENNE 100 100 20 84 17 HN14R 57 100 57 MOYENNE 100 100 42 81 66 HN15R MOYENNE 100 100 64 81 59 HN16R 38 59 38 MOYENNE 49 75 47 25 21 HN17R 21 100 21 TRES BONNE 100 100 49 16 LE01R 53 100 53 BONNE 100 100 71 91 56 LE02R 74										
HN11R 26 100 26 TRES BONNE 100 100 10 55 26 HN13R 36 100 36 MOYENNE 100 100 20 84 17 HN14R 57 100 57 MOYENNE 100 100 42 81 66 HN15R MOYENNE 100 69 MOYENNE 100 100 64 81 59 HN17R 21 100 21 TRES BONNE 49 75 47 25 21 HN17R 21 100 21 TRES BONNE 100 100 49 16 LE01R 53 100 53 BONNE 100 100 44 90 26 LE02R 74 100 74 BONNE 100 100 77 94 60 LE03R 81 100 81 TRES BONNE 100 100 77 94 6	HN07R	45		45	MOYENNE		100	35	78	
HN13R 36 100 36 MOYENNE 100 100 20 84 17 HN14R 57 100 57 MOYENNE 100 100 42 81 66 HN15R MOYENNE 100 100 64 81 59 HN16R 38 59 38 MOYENNE 49 75 47 25 21 HN17R 21 100 21 TRES BONNE 100 100 49 16 LE01R 53 100 53 BONNE 100 100 44 90 26 LE02R 74 100 74 BONNE 100 100 71 91 56 LE03R 81 100 81 TRES BONNE 100 100 77 94 60										
HN14R 57 100 57 MOYENNE 100 100 42 81 66 HN15R MOYENNE 100 69 MOYENNE 100 100 64 81 59 HN16R 38 59 38 MOYENNE 49 75 47 25 21 HN17R 21 100 21 TRES BONNE 100 100 49 16 LE01R 53 100 53 BONNE 100 100 44 90 26 LE02R 74 100 74 BONNE 100 100 71 91 56 LE03R 81 100 81 TRES BONNE 100 100 77 94 60										
HN15R MOYENNE 100 69 MOYENNE 100 100 64 81 59 HN16R 38 59 38 MOYENNE 49 75 47 25 21 HN17R 21 100 21 TRES BONNE 100 100 49 16 LE01R 53 100 53 BONNE 100 100 44 90 26 LE02R 74 100 74 BONNE 100 100 71 91 56 LE03R 81 100 81 TRES BONNE 100 100 77 94 60										
HN16R 38 59 38 MOYENNE 49 75 47 25 21 HN17R 21 100 21 TRES BONNE 100 100 49 16 LE01R 53 100 53 BONNE 100 100 44 90 26 LE02R 74 100 74 BONNE 100 100 71 91 56 LE03R 81 100 81 TRES BONNE 100 100 77 94 60										
HN17R 21 100 21 TRES BONNE 100 100 49 16 LE01R 53 100 53 BONNE 100 100 44 90 26 LE02R 74 100 74 BONNE 100 100 71 91 56 LE03R 81 100 81 TRES BONNE 100 100 77 94 60										
LE01R 53 100 53 BONNE 100 100 44 90 26 LE02R 74 100 74 BONNE 100 100 71 91 56 LE03R 81 100 81 TRES BONNE 100 100 77 94 60										
LE02R 74 100 74 BONNE 100 100 71 91 56 LE03R 81 100 81 TRES BONNE 100 100 77 94 60										
LE03R 81 100 81 TRES BONNE 100 100 77 94 60										
	LE04R	69	100	69	TRES BONNE	100	100	57	94	68

CODE ME	QUALITE INDICE GLOBAL	SCORE HYDROLOGIE	SCORE MORPHOLOGIE	QUALITE CONTINUITE	CYCLE HYDRO	ETIAGE	CHENAL	NATURE BERGES	RIPISYLVE
LE05R	79	100	79	TRES BONNE	100	100	67	94	92
LE06R	95	100	95	TRES BONNE	100	100	100	95	77
LE07R	56	100	56	BONNE	100 100	100 100	35 60	87 05	74
LE08R LE09R	74 74	100 100	74 74	TRES BONNE TRES BONNE	100	100	66	95 93	83 69
LE10R	MOYENNE	100	74	MOYENNE	100	100	64	88	82
LE11R	MOYENNE	97	68	MOYENNE	100	93	63	85	54
LE12R	MOYENNE	100	66	MOYENNE	100	100	52	95	66
LE13R	49	100	49	MOYENNE	100	100	22	86	80
LE14R	BONNE	100	81	BONNE	100	100	75	90	87
LE15R	MOYENNE	100	87	MOYENNE	100	100	87	88	85
LE16R	85	100	85	TRES BONNE	100	100	96	88	44
LE17R	75	100	75	BONNE	100	100	66	93	74
LE18R	85	100	85	TRES BONNE	100	100	89	83	76
LE19R	43	100	43	BONNE	100	100	11	89	74
LE20R	MOYENNE	100	81	MOYENNE	100	100	91	71	57
LE21R	76	100	76	BONNE	100	100	62	94	94
LE22R	34	100	34	BONNE	100	100	10	80	40
LE23R	55	100	55	BONNE	100	100	29	88	88
LE24R	60	100	60	TRES BONNE	100	100	51	75	65
LE25R	MOYENNE	100	80	MOYENNE	100	100	89	70	66
LE26R	55	100	55	MOYENNE	100	100	30	91	74
LE27R	60	100	60	BONNE	100	100	39	93	68
LE28R	MAUVAISE	100	45	MAUVAISE	100	100	14	89	73
LE29R	MOYENNE	99	86	MOYENNE	99	99	98	57	70
ML01R	BONNE	100	89	BONNE	100	100	98	94	36
ML02R	54	100	54	MOYENNE	100	100	43	93	5
ML03R	60	100	60	TRES BONNE	100	100 100	60 63	94	7
ML04R ML05R	64 43	100 100	64 43	TRES BONNE BONNE	100 100	100	22	89 93	20 23
ML06R	MOYENNE	100	84	MOYENNE	100	100	87	93	65
ML07R	56	100	56	BONNE	100	100	56	78	23
ML08R	58	100	58	TRES BONNE	100	100	54	88	20
ML09R	55	100	55	BONNE	100	100	42	94	28
ML10R	58	100	58	BONNE	100	100	48	92	24
ML11R	57	100	57	BONNE	100	100	41	95	41
ML12R	MOYENNE	100	84	MOYENNE	100	100	94	89	39
ML13R	71	100	71	BONNE	100	100	62	95	56
ML14R	61	100	61	TRES BONNE	100	100	42	95	68
ML15R	76	100	76	BONNE	100	100	73	91	62
ML16R	68	100	68	BONNE	100	100	58	93	49
MM03R	66	100	66	BONNE	100	100	54	94	61
MM04R	48	100	48	TRES BONNE	100	100	30	88	36
MM05R	49	100	49	MOYENNE	100	100	39	70	52
MM06R	MAUVAISE	100	65	MAUVAISE	100	100	54	88	60
MM07R	50	100	50	MOYENNE	100	100	26	89	63
MM08R	52	100	52	TRES BONNE	100	100	32	95	51
MM09R	MOYENNE	100	89	MOYENNE	100	100	100	80	59
MM10R	82	100	82	TRES BONNE	100	100	100	86	13
MM11R	53	100	53	TRES BONNE	100	100	32	95	56
MM12R	49	100	49	TRES BONNE	100	100	34	94	45
MM13R	64	100	64	BONNE TRES BONNE	100	100	51	95	57 95
MM14R MM15R	46 79	100 100	46 87	BONNE	100 100	100 100	10 84	92 93	85 86
MM16R	79 75	100	75	TRES BONNE	100	100	66	95	67
MM17R	75 79	100	75 79	TRES BONNE	100	100	74	90	70
MM18R	50	100	50	MOYENNE	100	100	30	84	62
MM19R	MOYENNE	100	66	MOYENNE	100	100	57	90	59
MM20R	77	100	77	TRES BONNE	100	100	65	95	67
MM21R	MOYENNE	100	94	MOYENNE	100	100	96	91	89
MM22R	60	100	60	TRES BONNE	100	100	43	91	59
MM23R	49	100	49	TRES BONNE	100	100	18	93	77
MM24R	90	100	90	TRES BONNE	100	100	100	81	70
MM25R	MAUVAISE	100	53	MAUVAISE	100	100	31	89	66
MM26R	MAUVAISE	100	71	MAUVAISE	100	100	66	85	62
MM27R	19	100	52	TRES MAUVAISE	100	100	43	74	51
MM28R	MAUVAISE	100	68	MAUVAISE	100	100	68	81	49
MM29R	MOYENNE	100	75	MOYENNE	100	100	80	80	50
MM30R	MAUVAISE	100	67	MAUVAISE	100	100	74	54	71
MM31R	19	100	42	TRES MAUVAISE	100	100	21	86	38
MM32R	50	100	50	TRES BONNE	100	100	27	91	54
MM33R	42	100	42	TRES BONNE	100	100	20	83	38
MM34R	34	100	34	BONNE	100	100	24	54	35
MM35R	37	100	37	MAUVAISE	100	100	17	61	62
MM36R	19	100	67	TRES MAUVAISE	100	100	60	83	64
MM37R	71	100	71	TRES BONNE	100	100	55	94	79
MM38R	10	50	10	MOYENNE	18	97	3	19	27
MM39R	4	4	90	BONNE	3	5	100	91	53
MV01R	38	100	38	TRES BONNE	100	100	10	78 70	60 70
MV02R	56	100	56	TRES BONNE	100	100	37	79	79

CODE ME	QUALITE INDICE GLOBAL	SCORE HYDROLOGIE	SCORE MORPHOLOGIE	QUALITE CONTINUITE	CYCLE HYDRO	ETIAGE	CHENAL	NATURE BERGES	RIPISYLVE
MV03R	55	100	55	MOYENNE	100	100	44	83	33
MV04R	56	100	56	MOYENNE	100	100	52	73	44
MV05R MV06R	MOYENNE MOYENNE	100 100	64 83	MOYENNE MOYENNE	100 100	100 100	63 94	77 85	45 31
MV07R	MAUVAISE	100	52	MAUVAISE	100	100	40	88	37
MV07R	MAUVAISE	100	52	MAUVAISE	100	100	31	94	57
MV09R	49	100	49	MOYENNE	100	100	29	90	47
MV10R	19	100	78	TRES MAUVAISE	100	100	91	62	59
MV11R	52	100	52	TRES BONNE	100	100	50	60	48
MV12R	MOYENNE	100	72	MOYENNE	100	100	62	89	77
MV13R	41	100	41	BONNE	100	100	29	57	54
MV14R	69	100	69	TRES BONNE	100	100	56	85	83
MV15R	54	100	54	TRES BONNE	100	100	47	77	39
MV16R	70	100	70	BONNE	100	100	66	89	55
MV17R	77	100	77	TRES BONNE	100	100	80	88	40
MV18R	39	100	39	MOYENNE	100	100	28	65	26
MV19R	29	100	29	TRES BONNE	100	100	10	73	7
MV20R	26	100	26	MOYENNE	100	100	21	43	5
MV21R	31	100	31	TRES BONNE	100	100	10	74	20
MV22R	52	100	52	TRES BONNE	100	100	49	68	28
MV23R	40	100	40	TRES BONNE	100	100	46	42	17
MV24R	MAUVAISE	100	64	MAUVAISE	100	100	60	88	38
MV25R MV26R	55 MAUVAISE	100	55 85	MOYENNE MAUVAISE	100 100	100 100	37 96	82 87	68 46
MV27R	51	100 100	51	TRES BONNE	100	100	33	83	<u>46</u> 55
MV27R MV28R	80	100	80	TRES BONNE	100	100	90	94	27
MV29R	48	100	48	TRES BONNE	100	100	38	95	7
MV30R	89	100	89	TRES BONNE	100	100	100	95	32
MV31R	MOYENNE	100	67	MOYENNE	100	100	71	59	53
MV31R MV32R	84	100	84	TRES BONNE	100	100	81	95	74
MV35R	9	33	9	MOYENNE	26	43	3	16	19
OS01R	MOYENNE	100	65	MOYENNE	100	100	55	93	54
OS02R	74	100	74	TRES BONNE	100	100	67	95	62
OU01R	49	100	49	TRES BONNE	100	100	39	87	22
OU02R	50	100	50	TRES BONNE	100	100	40	94	13
OU03R	70	100	70	TRES BONNE	100	100	66	94	48
OU04R	78	100	78	TRES BONNE	100	100	82	94	40
OU05R	68	100	68	TRES BONNE	100	100	66	92	38
OU06R	79	100	79	TRES BONNE	100	100	78	92	61
OU07R	60	100	60	TRES BONNE	100	100	52	91	29
OU08R	53	100	53	TRES BONNE	100	100	40	95	26
OU09R	53	100	53	TRES BONNE	100	100	43	88	39
OU10R	72	100	72	TRES BONNE	100	100	69	93	50
OU11R	88	100	88	TRES BONNE	100	100	100	80	57
OU12R	47	100	47	BONNE	100	100	31	90	32
OU13R	68	100	68	BONNE	100	100	62	91	54
OU14R	73	100	73	TRES BONNE	100 100	100 100	70 91	94	62 61
OU15R OU16R	86 50	100 100	86 50	TRES BONNE BONNE	100	100	37	95 73	53
OU17R	MOYENNE	99	87	MOYENNE	99	99	100	72	61
OU18R	65	100	65	BONNE	100	100	45	95	71
OU19R	47	100	47	TRES BONNE	100	100	13	91	83
OU20R	56	100	56	TRES BONNE	100	100	28	90	90
OU21R	50	100	50	TRES BONNE	100	100	41	78	35
OU22R	MOYENNE	100	76	MOYENNE	100	100	89	59	47
OU23R	70	100	70	BONNE	100	100	57	92	71
OU24R	BONNE	100	86	BONNE	100	100	86	100	61
OU25R	77	100	77	TRES BONNE	100	100	66	94	82
OU26R	54	83	54	MOYENNE	83	83	81	18	27
OU27R	MOYENNE	100	64	MOYENNE	100	100	57	86	51
OU28R	65	100	65	BONNE	100	100	48	93	68
OU29R	65	100	65	BONNE	100	100	51	89	73
OU30R	42	100	42	MOYENNE	100	100	18	85	44
OU31R	57	100	57	MOYENNE	100	100	37	93	65
OU32R	MOYENNE	100	74	MOYENNE TRES BONNE	100	100	95 57	26	48
OU33R	69	100	69 51	TRES BONNE	100	100	57 30	94	68 51
SA01R SA02B	51 56	100	51 56	BONNE	100	100	30	94	51 67
SA02R SA03R	56 MOYENNE	100 100	56 60	MOYENNE MOYENNE	100 100	100 100	39 49	83 87	67 52
SA03R SA04R	48	100	48	MOYENNE	100	100	31	75	56
SA04R SA05R	31	100	31	MOYENNE	100	100	10	65	47
SAUSK SA06R	41	100	41	MOYENNE	100	100	16	93	42
SA08R	49	89	49	BONNE	82	100	32	80	59
SA09R	42	100	42	MOYENNE	100	100	22	74	57
SA10R	MAUVAISE	100	69	MAUVAISE	100	100	69	84	51
SA11R	42	42	79	MOYENNE	3	100	80	77	77
SA12R	34	100	34	MAUVAISE	100	100	20	63	33
SA13R	38	81	38	MOYENNE	80	81	20	77	22
SA15R	53	100	53	TRES BONNE	100	100	38	85	51
<u> </u>					100	100	18		

CODE ME	QUALITE INDICE GLOBAL	SCORE HYDROLOGIE	SCORE MORPHOLOGIE	QUALITE CONTINUITE	CYCLE HYDRO	ETIAGE	CHENAL	NATURE BERGES	RIPISYLVE
SA17R	52	100	52	MOYENNE	100	100	29	86	71
SA18R SA19R	MAUVAISE 48	100 100	77 48	MAUVAISE MOYENNE	100 100	100 100	68 28	89 83	85 55
SA20R	56	100	56	BONNE	100	100	54	62	55
SA21R	47	100	47	BONNE	100	100 100	40	74	19
SA22R SA23R	48 38	100 100	48 38	MOYENNE MOYENNE	100 100	100	13	75 71	37 63
SA24R	30	100	30	TRES BONNE	100	100	10	64	40
SA25R	12	51	12	BONNE	18	100	3	26	23
SA26R SA27R	34 7	100 42	34 7	MOYENNE BONNE	100 3	100 100	21 3	51 13	51 7
SC01R	MOYENNE	100	72	MOYENNE	100	100	65	94	56
SC02R	MOYENNE	100	62	MOYENNE	100	100	46	87	70
SC03R SC04R	MOYENNE 48	100 100	72 48	MOYENNE MOYENNE	100 100	100 100	63 39	89 63	75 49
SC05R	72	100	72	BONNE	100	100	70	87	49
SC06R	BONNE	100	91	BONNE	100	100	94	92	74
SC07R SC08R	MOYENNE 52	100 100	76 52	MOYENNE BONNE	100 100	100 100	70 40	87 78	77 38
SC09R	MAUVAISE	100	68	MAUVAISE	100	100	55	89	72
SC10R	MOYENNE	100	82	MOYENNE	100	100	85	91	53
SC11R SC12R	MOYENNE 78	100 100	78 78	MOYENNE BONNE	100 100	100 100	82 92	94 81	37 29
SC12R SC13R	MOYENNE	100	60	MOYENNE	100	100	53	92	34
SC14R	57	100	57	MOYENNE	100	100	48	88	36
SC15R SC16R	74 65	100 100	74 65	TRES BONNE TRES BONNE	100 100	100 100	72 53	93 92	48 48
SC16R SC17R	75	100	75	TRES BONNE	100	100	81	94	27
SC18R	62	100	62	TRES BONNE	100	100	57	92	31
SC19R SC20R	74 MOYENNE	100 100	74 69	TRES BONNE MOYENNE	100 100	100 100	78 70	89 87	37 38
SC20R SC21R	51	100	51	TRES BONNE	100	100	31	94	36
SC22R	MOYENNE	100	86	MOYENNE	100	100	100	93	31
SC23R	74	100	74	BONNE	100	100	78	89	32
SC24R SC25R	MAUVAISE 89	100 100	72 89	MAUVAISE TRES BONNE	100 100	100 100	69 97	90 95	51 52
SC26R	73	100	73	BONNE	100	100	67	88	77
SC27R	66	100	66	TRES BONNE	100	100	65	95	40
SC28R SC29R	90 77	100 100	90 77	TRES BONNE BONNE	100 100	100 100	99 81	92 90	54 43
SC30R	BONNE	100	90	BONNE	100	100	90	94	83
SC31R	MAUVAISE	100	47	MAUVAISE	100	100	38	77	51
SC32R SC33R	81 51	100 100	81 51	TRES BONNE BONNE	100 100	100 100	85 35	93 94	52 58
SC34R	89	100	89	TRES BONNE	100	100	100	95	44
SC35R	78	100	78	BONNE	100	100	82	93	45
SC36R SC37R	MOYENNE MOYENNE	100 100	74 86	MOYENNE MOYENNE	100 100	100 100	78 100	91 85	43 36
SC38R	29	100	29	TRES BONNE	100	100	37	17	20
SC39R	74	100	74	TRES BONNE	100	100	76	95	22
SC40R SC41R	68 4	100	68 89	TRES BONNE BONNE	100 3	100 5	62 93	95 94	89 63
SN01R	64	100	64	BONNE	100	100	68	73	27
SN02R	62	100	62	TRES BONNE	100	100	61	85	11
SN03R SN04R	57 MOYENNE	100	57 61	MOYENNE MOYENNE	100 63	100 63	60 55	72 77	17 49
SN04R SN05R	MAUVAISE	63 100	61 58	MAUVAISE	63 100	100	55	77 66	38
SN06R	MOYENNE	100	63	MOYENNE	100	100	69	66	31
SN07R	MOYENNE MOYENNE	77 94	61	MOYENNE MOYENNE	77 100	77 96	62	70	37 87
VE01R VE02R	89	100	90 89	TRES BONNE	100 100	86 100	89 100	95 95	42
VE03R	81	81	85	TRES BONNE	87	70	94	93	43
VE04R	19	42	64	TRES MAUVAISE	3	100	61	59 77	80
VE05R VE06R	49 MOYENNE	100 100	49 94	TRES BONNE MOYENNE	100 100	100 100	40 100	77 94	37 70
VE07R	MAUVAISE	100	48	MAUVAISE	100	100	42	76	19
VE08R	53	100	53	MOYENNE	100	100	35	92	50
VE09R VE10R	29 23	100 100	29 23	TRES BONNE TRES BONNE	100 100	100 100	15 22	56 28	31 18
VE11R	MOYENNE	100	88	MOYENNE	100	100	93	94	63
VE12R	MOYENNE	100	81	MOYENNE	100	100	74	85	100
VE13R VE14R	75 MAUVAISE	100 100	75 75	BONNE MAUVAISE	100 100	100 100	75 97	86 46	58 58
VE14R VE15R	51	100	51	MOYENNE	100	100	41	80	29
VE16R	MOYENNE	100	88	MOYENNE	100	100	96	86	58
VE17R VE18R	MOYENNE MOYENNE	100 74	74 67	MOYENNE MOYENNE	100 56	100 100	83 86	72 25	48 39
VE18R VE19R	31	100	31	TRES BONNE	100	100	10	71	39
VE20R	MAUVAISE	100	43	MAUVAISE	100	100	29	61	60
VE21R	MOYENNE	100	77	MOYENNE	100	100	79	95	44

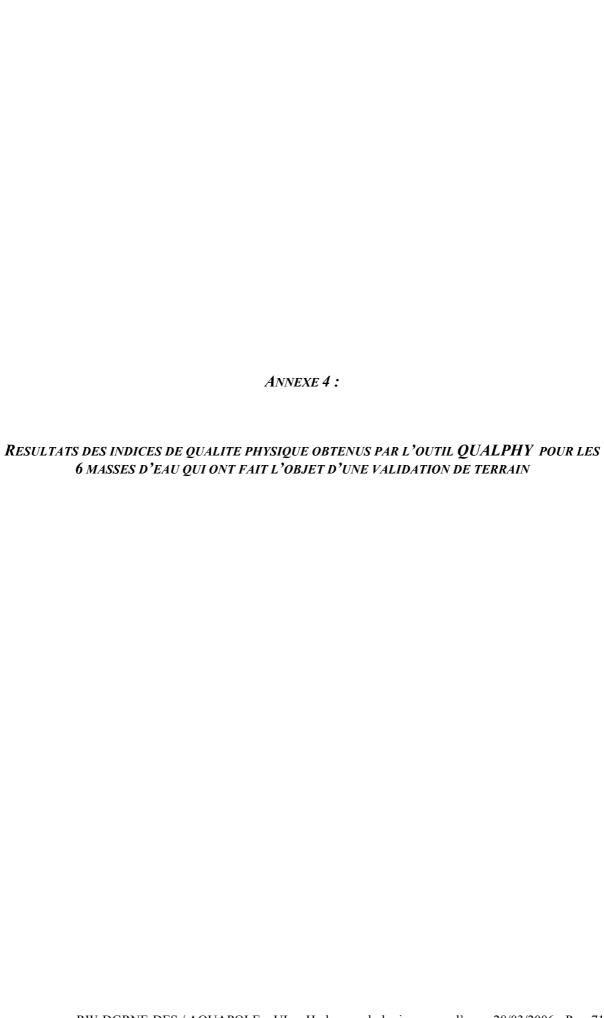


Tableau : Résultats des indices QUALPHY (1)

CODE_ME	TYPE_MASSE	CODE_SEG	Length	IND_GLO	IND_BERGES	IND_LITMIN
		DENOCC1	1048,5	49,22	57,55	37,95
		DENOCC2	945,4	33,26	46,4	30,13
		DENOCC3	2630,1	45,85	57,36	30,13
		DENOCC4	940,7	45,28	57,36	29,82
		DENOCC5	582,7	35,05	44,51	29,82
		DENOCC6	617,4	41,02	42,72	29,82
	•	DENOCC7	1904,1	31,28	35,31	29,82
DE01R	naturelle	DENOCC8	5627,1	46,23	46,4	37,95
		HER1	3283,9	48,79	58,03	37,95
		HER2	570,2	45,39	42,9	37,95
		HER3	2365,0	47,52	58,09	34,78
		SECDEN1	4121,9	58,84	64,16	50,62
		SECDEN2	1869,8	52,9	67,83	37,29
		SECDEN3	449,3	45,22	53,01	30,75
		SECDEN4	1995,5	51,07	67,22	30,75
		TAR1	5287,0	49,98	54,01	37,53
		DENOCC9	5506,1	47,2	50,56	32,9
		DENOCC10	681,6	56,3	67,87	46,7
	•	DENOCC11	1579,9	23,9	33,4	23
DE03R	hmwb	44E1	1024,7	62	77	47
	•	44E2	901,7	33	47	29
		44E3	665,4	56	68	41
		44E4	873,3	27	41	27
		44E5	1700,4	22	33	29
		BLA1	289,4	40,15	46,52	24,62
	•	BLA2	670,5	46,68	58,23	30,13
		BLA3	510,5	50,45	58,29	37,95
DE04R	naturelle	BLA4	1149,0	37,7	43,1	37,95
	•	BLA5	1317,1	53,64	57,55	47,71
		BLA6	3564,5	59,36	70	47,71
		BLA7	725,7	33,32	52,58	30,13
		BLA8	2087,3	47,48	64,47	30,13
	İ	HAI1	1581,6	46,06	46,4	39,56
	ļ	HAI2	2026,4	72,15	73,31	59,53
	ľ	HAI3	928,7	45,98	46,4	34,54
		HAI4	2272,8	67,62	68,43	49,46
		HAI5	1135,9	29,14	32,66	31,44
		HAI6	1959,0	57,61	51,72	59,53
		HAI7	581,0	70,28	73,42	49,77
		HAI8	278,8	46,3	58,17	31,75
SN06R	hmwb	HAI9	1554,6	65,69	70	59,53
		HAI10	887,0	67,48	58,63	58,47
		HAI11	1810,5	42,64	46,4	33,84
		HAI12	832,1	39,32	46,4	46,42
	[HAI13	928,3	67,66	59,68	58,16
		HAI14	966,9	62,57	62,84	58,6
		HAI15	604,1	42,71	56,16	16,74
	ļ	HAI16	1405,7	56,6	70,06	36,44
		HAI17	2867,6	53,53	50,01	59,53
1	•	HAI18	511,8	23,3	25,28	31,75

Tableau : Résultats des indices QUALPHY (2)

CODE_ME	TYPE_MASSE	CODE_SEG	Length	IND_GLO	IND_BERGES	IND_LITMIN
		LOM1	1408,0	41,03	64,55	27,83
		LOM2	2710,3	51,81	44,21	41,9
		MIG1	4656,7	59,41	64,65	51,67
		MIG2	1439,4	68,04	70,06	51,67
		MIG3	812,6	45,4	61,04	23,58
		MIG4	990,8	42,22	46,4	30,13
		SEN1	4189,1	62	61,99	40,27
		SEN2	1061,6	51,2	57,52	40,5
		SEN3	2245,2	60,38	61,19	39,36
		SEN4	414,7	31,14	21,6	28,32
		SEN5	778,6	50,37	48,93	40,86
		SEN6	1656,3	54,44	64,25	51,22
		SEN7	746,1	40,86	25,09	34,42
		SEN8	2471,9	57,79	69,47	37,92
		SEN9	2517,2	59,37	62,98	50,63
		SEN10	774,6	47,23	62,23	37,53
		SEN11	1045,0	29,31	32,2	36,75
		SEN12	840,8	47,85	53,59	36,13
		SET1	1025,7	48,32	49,83	38,57
		SET2	1079,5	61,01	68,43	40,54
SN07R	hmwb	SET3	1590,5	63,65	67,98	41,9
		SET4	1908,4	61,18	62,12	41,9
		SET5	1297,5	31,86	36,64	37,95
		SET6	895,1	66,07	60,02	51,67
		SET7	526,7	18,08	0	25,28
		SET8	1704,0	38,94	41,28	37,95
		SET9	708,7	48,11	63,78	33,12
		SET10	2074,5	74,46	80,59	58,65
		SET11	674,3	44,35	57,09	24,45
		SET12	581,4	71,33	78,79	49,77
		SET13	328,9	38,74	52,58	33,12
		SET14	2134,6	62,66	63,06	46,21
		SET15	814,2	42,54	49,83	31,15
		SET16	749,2	60,23	62,25	45,65
		SET17	1268,4	19,76	25,28	23,34
		SET18	1277,7	57,85	67,9	44,27
		SET19	572,4	45,72	62,23	34,5
		SET20	759,0	25,98	25,28	30,84
		SET21	1623,8	57,8	75,66	47,02
		SET22	1765,4	50,51	73,86	36
		SET23	3265,2	27,03	28,71	24,12
		SET24	1039,3	61,72	73,86	55,7
		SET25	497,4	43,48	73,86	32,21
		MV22R07	3701,5	44	49	35
		MV22R05	2164,9	59	55	56
		MV22R06	4322,4	71	59	59
MV22R	hmwb	MV22R04	2487,8	39	36	42
		MV22R02	1615,3	33	28	47
		MV22R03	1296,9	57	49	55
		MV22R02	315,2	33	28	47
		MV22R01	984,8	58	52	51

ANNEXE 4:

CONTRIBUTIONS A LA DESIGNATION DEFINITIVE DES MEFM

USAGE "ALIMENTATION EN EAU POTABLE & HYDROELECTRICITE"

CODE_ME	NOM_ME	NAME_TYPO	USAGE PRINCIPAL	USAGE SECONDAIRE	INDICE GLOBAL	INDICE HYDROLOGIE	INDICE MORPHOLOGIE	INDICE CONTINUITE	LINEAIRE TOTAL ME	%LIN_PERTURB CYCLE_HYDRO	%LIN_PERTURB ETIAGE	DEBIT RESERVE	DEBIT ECLUSEE	DEBIT TRANSFERE	MODULE
SC41R	VIERRE AVAL BARRAGE	Rivières lorraines à pente moyenne	AEP HYDROELECTRICITE		3	3	92	56	7837	100	100				
VE04R	VESDRE AVAL BARRAGE	Rivières condrusiennes à forte pente	OUVRAGES HYDRAULIQUES	AEP HYDROELECTRICITE	13	42	91	13	12324	100					1
DE03R	PARTIES AVAL DENDRE OCC. + ORIENT	Rivières limoneuses à pente moyenne	URBANISATION	AEP HYDROELECTRICITE	37	64	37	100	10743		37			•	

USAGE "AGRICULTURE"

CODE_ME	NOM_ME	NAME_TYPO	USAGE PRINCIPAL	USAGE SECONDAIRE	INDICE GLOBAL	INDICE HYDROLOGIE	INDICE MORPHOLOGIE	INDICE CONTINUITE	LINEAIRE TOTAL ME	%RECTIFICATION DU LIT	%BERGES ARTIFICIALISEES	%BERGES URBANISEES	%ABSENCE RIPISYLVE
DE04R	BLANCHE	Ruisseaux limoneux à pente moyenne	AGRICULTURE		39	100	39	100	10314	84			38
MV04R	BURDINALE	Ruisseaux limoneux à pente moyenne	OUVRAGES	AGRICULTURE	32	100	55	32	11368	58	22	14	22
MV20R	EXHAURE ANS	Ruisseaux limoneux à pente moyenne	AGRICULTURE		27	100	27	100	10634	87	41	2	100
SC08R	SEMOIS AMONT	Ruisseaux lorrains à pente moyenne	AGRICULTURE		39	100	39	89	42736	70	1	14	43
MM27R	MOLIGNEE AMONT	Ruisseaux condrusiens à forte pente	OUVRAGES HYDRAULIQUES	AGRICULTURE	29	100	52	29	16320	70		16	78
SA17R	BIESME AMONT	Ruisseaux condrusiens à forte pente	OUVRAGES HYDRAULIQUES	AGRICULTURE	30	100	53	30	25901	85		11	42
DE01R	DENDRE OCC.	Ruisseaux limoneux à pente moyenne	AGRICULTURE		35	100	35	83	36449	84		31	72
MV25R	GUEULE AMONT	Ruisseaux condrusiens à forte pente	OUVRAGES HYDRAULIQUES	AGRICULTURE	38	100	58	38	22688	71	15	13	33
MV18R	GEER AMONT	Ruisseaux limoneux à pente moyenne	AGRICULTURE		40	100	40	72	62833	82	2	15	49
DE08R	MARCQ	Ruisseaux limoneux à pente moyenne	AGRICULTURE		32	84	32	84	12642	62		9	19

USAGE "URBANISATION & PROTECTION CONTRE LES INONDATIONS"

CODE_ME	NOM_ME	NAME_TYPO	USAGE PRINCIPAL	USAGE SECONDAIRE	INDICE GLOBAL	INDICE HYDROLOGIE	INDICE MORPHOLOGIE	INDICE CONTINUITE	LINEAIRE TOTAL ME	%RECTIFICATION DU LIT	%CHENALISATION NAVIGATION	%BERGES ARTIFICIALISEES	%BERGES URBANISEES	%ABSENCE RIPISYLVE	%URBANISATION DU LIT MAJEUR	%DIGUES ET REMBLAIS
DE03R	PARTIES AVAL DENDRE OCC. + ORIENT	Rivières limoneuses à pente moyenne	URBANISATION		37	64	37	100	10743	76		59	6	59	55	
MM35R	GELBRESSEE	Ruisseaux condrusiens à forte pente	URBANISATION	CAMP MILITAIRE	39	100	39	43	8859	100		2	25	20	31	
VE18R	VESDRE AVAL	Rivières condrusiennes à pente moyenne	URBANISATION	OUVRAGES HYDRAULIQUES	31	74	63	31	44834	16		72	15	47	63	
VE10R	DISON	Ruisseaux condrusiens à forte pente	URBANISATION		23	100	23	100	5570	87		55	18	95	68	
EL18R	ESCAUT	Grandes rivières limoneuses à pente faible	NAVIGATION	URBANISATION	5	51	5	59	23250		100	100		100	100	
HN16R	HAINE AVAL	Rivières limoneuses à pente moyenne	URBANISATION		22	42	22	100	32422	57		59	8	60	52	
SA25R	SAMBRE AMONT	Grandes rivières condrusiennes à pente faible	NAVIGATION	URBANISATION	14	51	14	43	37354		100	96		91	63	
SA27R	SAMBRE AVAL	Grandes rivières condrusiennes à pente faible	NAVIGATION	URBANISATION	3	42	3	59	50739		100	94		92	100	
MM38R	MEUSE AMONT	Très grandes rivières condrusiennes à pente faible	NAVIGATION	URBANISATION	15	50	15	100	39977		100	88	0	81	32	
MV35R	MEUSE AVAL	Très grandes rivières condrusiennes à pente faible	NAVIGATION	URBANISATION	8	32	8	100	97483		100	96	0	88	65	

USAGES "OUVRAGES HYDRAULIQUES"

CODE_ME	NOM_ME	NAME_TYPO	USAGE PRINCIPAL	USAGE SECONDAIRE	INDICE GLOBAL	INDICE HYDROLOGIE	INDICE MORPHOLOGIE	INDICE CONTINUITE	LINEAIRE TOTAL ME	NB_OBSTACLES INFRANCHISSABLES OU MAJEURS
MM36R	SAMSON	Ruisseaux condrusiens à forte pente	OUVRAGES HYDRAULIQUES		20	100	67	20	45741	15
MV04R	BURDINALE	Ruisseaux limoneux à pente moyenne	OUVRAGES HYDRAULIQUES	AGRICULTURE	32	100	55	32	11368	2
MM27R	MOLIGNEE AMONT	Ruisseaux condrusiens à forte pente	OUVRAGES HYDRAULIQUES	AGRICULTURE	29	100	52	29	16320	12
MM30R	BOCQ AVAL	Rivières condrusiennes à pente moyenne	OUVRAGES HYDRAULIQUES		17	100	74	17	22928	7
SA18R	BIESME AVAL	Ruisseaux condrusiens à pente moyenne	OUVRAGES HYDRAULIQUES		17	100	78	17	6559	3
SA17R	BIESME AMONT	Ruisseaux condrusiens à forte pente	OUVRAGES HYDRAULIQUES	AGRICULTURE	30	100	53	30	25901	7
MV25R	GUEULE AMONT	Ruisseaux condrusiens à forte pente	OUVRAGES HYDRAULIQUES	AGRICULTURE	38	100	58	38	22688	4
VE14R	HOEGNE AVAL	Rivières condrusiennes à forte pente	OUVRAGES HYDRAULIQUES		17	100	81	17	9469	5
MM26R	MOLIGNEE + FLAVION	Ruisseaux condrusiens à pente moyenne	OUVRAGES HYDRAULIQUES		28	100	70	28	40720	15
VE18R	VESDRE AVAL	Rivières condrusiennes à pente moyenne	URBANISATION	OUVRAGES HYDRAULIQUES	31	74	63	31	44834	11
VE04R	VESDRE AVAL BARRAGE	Rivières condrusiennes à forte pente	OUVRAGES HYDRAULIQUES	AEP HYDROELECTRICITE	13	42	91	13	12324	11
MV31R	MEHAIGNE AVAL	Rivières limoneuses à pente moyenne	OUVRAGES HYDRAULIQUES		33	100	69	33	10181	4
MV06R	MEHAIGNE MOYENNE	Rivières limoneuses à pente moyenne	OUVRAGES HYDRAULIQUES		34	100	88	34	26886	4

USAGE "NAVIGATION"

CODE_ME	NOM_ME	NAME TYPO	USAGE PRINCIPAL	USAGE SECONDAIRE	INDICE GLOBAL	INDICE HYDROLOGIE	INDICE MORPHOLOGIE	INDICE CONTINUITE	LINEAIRE TOTAL ME	%CHENAISATION NAVIGATION	%BERGES ARTIFICIALISEES	%ABSENCE RIPISYLVE	NB_ECLUSES	NB_ECLUSES EQUIPEES	NB_PASSES FONCTIONNELLES	%BRAS DECONNECTES
DE09R	DENDRE AVAL	Rivières limoneuses à pente faible	NAVIGATION		12	51	12	59	16944	100	82	66	8	0		
EL18R + EL19R	ESCAUT	Grandes rivières limoneuses à pente faible	NAVIGATION	URBANISATION	5	51	5	59	23250	100	100	100	5	0		
SA25R	SAMBRE AMONT	Grandes rivières condrusiennes à pente faible	NAVIGATION	URBANISATION	14	51	14	43	37354	100	96	91	13	0		
SA27R	SAMBRE AVAL	Grandes rivières condrusiennes à pente faible	NAVIGATION	URBANISATION	3	42	3	59	50739	100	94	92	9	0		
MM38R	MEUSE AMONT	Très grandes rivières condrusiennes à pente faible	NAVIGATION	URBANISATION	15	50	15	100	39977	100	88	81	6	6		
MV35R	MEUSE AVAL	Très grandes rivières condrusiennes à pente faible	NAVIGATION	URBANISATION	8	32	8	100	97483	100	96	88	9	9		